Bitrise 开源项目教程
项目介绍
Bitrise 是一个强大的持续集成和持续交付(CI/CD)平台,专为移动应用开发而设计。它提供了一个用户友好的界面,支持多种编程语言和框架,能够帮助开发者自动化构建、测试和部署移动应用。Bitrise 的核心目标是简化开发流程,提高开发效率,确保应用的高质量交付。
项目快速启动
1. 安装 Bitrise CLI
首先,你需要安装 Bitrise CLI。你可以通过以下命令在终端中安装:
brew install bitrise
2. 初始化项目
进入你的项目目录,并初始化 Bitrise 配置:
cd your-project-directory
bitrise init
3. 配置 Bitrise 工作流
Bitrise 使用 YAML 文件来定义工作流。你可以在项目根目录下找到 bitrise.yml 文件。以下是一个简单的示例配置:
format_version: '8'
default_step_lib_source: https://github.com/bitrise-io/bitrise-steplib.git
workflows:
primary:
steps:
- activate-ssh-key@4.0.3:
run_if: '{{getenv "SSH_RSA_PRIVATE_KEY" | ne ""}}'
- git-clone@4.0.17: {}
- script@1.1.5:
title: Do anything with Script step
- xcode-test@2.4.10:
inputs:
- project_path: $BITRISE_PROJECT_PATH
- scheme: $BITRISE_SCHEME
- deploy-to-bitrise-io@1.9.4: {}
4. 运行工作流
配置完成后,你可以通过以下命令运行工作流:
bitrise run primary
应用案例和最佳实践
1. 自动化测试
Bitrise 提供了丰富的插件和步骤,可以帮助开发者自动化测试流程。通过配置 xcode-test 步骤,你可以轻松集成 Xcode 测试,并在每次代码提交后自动运行测试。
2. 持续集成与持续交付
Bitrise 支持多种 CI/CD 场景,包括自动化构建、测试、部署等。通过配置不同的工作流,你可以实现从代码提交到应用上线的全自动化流程。
3. 多平台支持
Bitrise 不仅支持 iOS 和 Android 平台,还支持 React Native、Flutter 等多种跨平台框架。开发者可以根据项目需求选择合适的步骤和插件,实现多平台的统一管理。
典型生态项目
1. Bitrise CLI
Bitrise CLI 是 Bitrise 的核心工具,提供了命令行接口,帮助开发者本地运行和管理 Bitrise 工作流。
2. Bitrise StepLib
Bitrise StepLib 是一个开源的步骤库,包含了大量的预定义步骤,开发者可以直接使用这些步骤来构建自己的工作流。
3. Bitrise Workflow Editor
Bitrise Workflow Editor 是一个图形化的工作流编辑器,帮助开发者通过拖拽的方式配置和管理工作流,无需手动编辑 YAML 文件。
通过以上模块的介绍,你可以快速上手 Bitrise 项目,并了解其在实际开发中的应用和最佳实践。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00