Jotai 中的惰性初始化原子实现方案
Jotai 是一个 React 状态管理库,它采用原子(atom)的概念来管理应用状态。在最新讨论中,开发者们提出了一个有趣的功能需求:如何实现原始原子(primitive atom)的惰性初始化。
惰性初始化的需求背景
在 React 应用中,我们经常会遇到需要延迟执行某些初始化逻辑的场景。例如:
- 某些计算密集型操作希望在真正使用时才执行
- 某些资源需要在应用初始化完成后才可用
- 避免在不同存储(store)或提供者(provider)之间共享对象
目前 Jotai 中,只有派生原子(derived atom)支持惰性求值,原始原子在创建时就会立即初始化。这限制了某些使用场景,因此开发者们探讨了如何为原始原子添加惰性初始化能力。
解决方案演进
初始方案:原子嵌套原子
最初提出的解决方案是使用一个包装原子(wrapped atom)来包裹实际原子:
function atomWithLazy(makeInitial) {
const wrappedAtom = atom(() => atom(makeInitial()))
return atom(
(get) => get(get(wrappedAtom)),
(get, set, ...args) => set(get(wrappedAtom), ...args)
)
}
这种方案通过两层原子结构实现了惰性初始化:
- 外层原子(wrappedAtom)在首次使用时才会创建内层原子
- 内层原子才是真正存储值的原始原子
- 返回的代理原子负责转发读写操作
与 Jotai Scope 的兼容性问题
该方案在与 Jotai Scope 一起使用时会出现问题。由于 Scope 会创建新的存储上下文,导致原子被意外创建多次。为了解决这个问题,开发者们引入了 unstable_is 标识来确保原子身份的一致性。
更优雅的解决方案:init 属性劫持
经过深入探讨,开发者们提出了一个更为优雅的解决方案 - 通过劫持原子的 init 属性:
function atomWithLazy(makeInitial) {
return {
...atom(undefined),
get init() {
return makeInitial();
},
};
}
这个方案的优势在于:
- 直接创建一个原始原子,但初始值为 undefined
- 通过 getter 劫持 init 属性,在首次访问时才执行初始化函数
- 避免了原子嵌套带来的复杂性
- 代码更加简洁直观
虽然在与 Jotai Scope 一起使用时会有轻微的性能开销(初始化函数会被调用3次而非1次),但这种权衡被认为是可接受的。
实现原理分析
惰性初始化原子的核心原理是利用了 JavaScript 的 getter 特性。当 Jotai 存储首次访问原子时,会读取其 init 属性来获取初始值。通过将 init 定义为 getter,我们可以延迟初始化逻辑的执行。
这种实现方式与 React 的 lazy 组件有相似之处,都是将初始化逻辑推迟到真正需要时才执行。对于资源敏感型应用,这种延迟加载策略可以显著提升初始加载性能。
使用场景建议
惰性初始化原子特别适用于以下场景:
- 计算密集型操作:如大数据集处理、复杂计算等
- 异步资源加载:如需要等待某些API响应后才能初始化的状态
- 上下文敏感资源:如需要特定上下文(如认证信息)才能初始化的对象
- 多存储隔离:确保不同存储实例拥有独立的状态对象
总结
Jotai 社区通过深入讨论,最终确定了一个简洁而强大的惰性初始化原子实现方案。这种方案不仅满足了原始原子延迟初始化的需求,还保持了与现有功能(如 Jotai Scope)的良好兼容性。通过劫持 init 属性的方式,开发者可以轻松创建只在首次使用时才执行初始化逻辑的原子,为状态管理提供了更大的灵活性。
这种实现方式展示了 Jotai 设计上的可扩展性,也体现了开源社区通过协作解决问题的智慧结晶。对于需要精细控制状态初始化时机的应用场景,这无疑是一个有价值的补充。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059
CommonUtilLibrary快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05
GitCode百大开源项目GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
openHiTLS旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML013