G2数据可视化库中的normalizeY转换详解
2025-05-18 12:53:16作者:尤峻淳Whitney
什么是normalizeY转换
normalizeY是G2数据可视化库中的一种数据转换方法,主要用于对Y轴数据进行归一化处理。归一化是一种常见的数据预处理技术,它可以将不同量纲或不同范围的数据统一到相同的比例尺度上,便于进行比较分析。
normalizeY的核心作用
normalizeY转换的核心作用是将数据按组归一化到[0,1]区间内。这种转换特别适用于以下场景:
- 比较不同组别内部的数据分布情况
- 消除数据量级差异带来的视觉偏差
- 突出显示数据在组内的相对比例关系
normalizeY的工作原理
normalizeY转换通过以下数学公式对每组数据进行处理:
归一化值 = (当前值 - 组内最小值) / (组内最大值 - 组内最小值)
这种处理方式保证了每组数据都会被独立地映射到[0,1]区间,使得组内比较更加直观。
配置参数详解
normalizeY转换支持以下配置参数:
| 参数名 | 描述 | 类型 | 默认值 | 是否必填 |
|---|---|---|---|---|
| groupBy | 定义分组字段 | string | 无 | 是 |
| field | 指定要归一化的字段 | string | 无 | 是 |
典型应用场景
1. 堆叠柱状图的归一化
在堆叠柱状图中使用normalizeY转换,可以清晰地展示各组内部各项的比例关系,而不会被绝对数值的大小所干扰。
2. 分组柱状图的归一化比较
对于分组柱状图,normalizeY转换可以帮助我们专注于比较各组内部的数据分布模式,而不是绝对值的大小。
3. 多系列数据的标准化展示
当需要同时展示多个量纲不同或范围差异较大的数据系列时,normalizeY转换可以消除这些差异,使图表更具可读性。
实现示例
以下是一个使用normalizeY转换的典型代码示例:
chart.options({
type: 'interval',
data: [
{ genre: 'Sports', sold: 275, type: 'A' },
{ genre: 'Strategy', sold: 115, type: 'A' },
{ genre: 'Action', sold: 120, type: 'A' },
{ genre: 'Sports', sold: 350, type: 'B' },
{ genre: 'Strategy', sold: 150, type: 'B' },
{ genre: 'Action', sold: 200, type: 'B' }
],
transform: [
{ type: 'normalizeY', groupBy: 'type', field: 'sold' }
],
encode: {
x: 'genre',
y: 'sold',
color: 'type'
}
});
在这个示例中,我们按照type字段分组,对sold字段进行归一化处理,使得A组和B组内部的数据都能在相同的比例尺度上进行比较。
使用注意事项
- 归一化会丢失原始数据的绝对值信息,只保留相对比例关系
- 当组内所有值相同时,归一化结果会变为0(因为最大最小值相同)
- 归一化处理后的图表需要明确标注或说明,避免读者误解数据含义
与其他转换的对比
与stackY转换相比,normalizeY更关注组内相对比例而非累计总量;与sortBy转换相比,normalizeY改变了数值本身而非排序方式。理解这些差异有助于选择最合适的数据转换方法。
通过合理使用normalizeY转换,我们可以创建出更具洞察力的数据可视化作品,帮助观众快速把握数据的内在结构和模式。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
443
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
822
397
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
556
111