Stable Diffusion WebUI DirectML项目中的GPU存储恢复问题分析
问题背景
在Stable Diffusion WebUI DirectML项目中,当用户尝试使用某些特定模型(如R-ESRGAN、R-ESRGAN-ANIME、DAT、SwinIR等)进行高分辨率修复(highrex fix)时,系统会抛出运行时错误:"don't know how to restore data location of torch.storage.UntypedStorage (tagged with privateuseone:0)"。这个问题主要影响使用DirectML后端在AMD/Intel/NVIDIA GPU上运行Stable Diffusion的用户。
技术分析
错误根源
该错误的核心在于PyTorch的存储恢复机制与DirectML后端的兼容性问题。当系统尝试加载模型权重时,PyTorch无法正确处理标记为"privateuseone:0"的存储位置。这种存储位置标记通常用于自定义设备或特殊后端,而DirectML目前尚未完全实现对此类存储位置的恢复支持。
影响范围
此问题主要影响以下场景:
- 使用Real-ESRGAN系列模型进行超分辨率处理
- 使用某些特定的图像修复模型
- 在Windows平台使用DirectML后端进行GPU加速
深层原因
问题的根本原因在于DirectML驱动层对PyTorch存储恢复机制的支持不完整。当PyTorch尝试将模型权重恢复到GPU内存时,DirectML无法正确识别和处理"privateuseone"这一特殊设备标记,导致存储恢复失败。
解决方案
临时解决方案
-
使用替代后端:考虑使用ZLUDA或SD.Next等替代方案,这些后端对PyTorch的存储恢复机制有更好的支持。
-
更换模型:使用其他兼容性更好的超分辨率模型,如SwinIR或ScuNET,这些模型在DirectML后端下表现更稳定。
-
等待官方修复:微软DirectML团队已意识到此问题,并正在开发修复方案。
长期展望
随着DirectML生态的不断完善,预计未来版本将解决此类存储恢复问题。开发者可以关注DirectML的更新日志,及时获取兼容性改进信息。
技术建议
对于需要在DirectML环境下稳定运行Stable Diffusion的用户,建议:
- 定期检查DirectML驱动更新
- 在模型选择时优先考虑已知兼容性良好的模型
- 对于关键工作流程,准备备用方案(如CPU模式或兼容性更好的后端)
这个问题虽然影响特定功能的使用,但通过合理的规避措施和工作流程调整,仍然可以在DirectML环境下获得良好的Stable Diffusion使用体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00