ESM蛋白质语言模型安装问题分析与解决方案
问题背景
ESM(Evolutionary Scale Modeling)是Meta AI开发的一系列蛋白质语言模型,能够对蛋白质序列进行表示学习和结构预测。最近有用户在尝试安装ESM时遇到了依赖冲突问题,特别是在使用conda创建新环境后通过pip安装时出现torchvision依赖冲突。
错误现象分析
用户在Python 3.13环境下创建conda环境后,尝试通过pip安装ESM时遇到了以下核心错误:
ERROR: Cannot install esm==3.0.0 to esm==3.0.8 because these package versions have conflicting dependencies.
The conflict is caused by:
esm 3.0.8 depends on torchvision
...
错误表明所有ESM版本(3.0.0到3.0.8)都依赖torchvision,但pip无法解析这个依赖关系。
技术原因
-
Python版本兼容性:用户使用的是Python 3.13,这可能是导致问题的原因之一。ESM目前主要针对Python 3.7-3.10进行测试和优化。
-
PyTorch生态系统复杂性:ESM依赖PyTorch及其相关库(torchvision),这些库有严格的版本匹配要求,特别是在CUDA支持方面。
-
conda与pip混用问题:conda和pip的依赖解析机制不同,混合使用时可能出现冲突。
解决方案
根据项目维护者的建议和实际测试,推荐以下安装方法:
-
使用Python 3.10环境:
conda create -n esm python==3.10 conda activate esm
-
通过pip安装ESM:
pip install esm
-
完整环境配置示例:
conda create -n esm python==3.10 -c conda-forge ruff pyright clize polars conda activate esm pip install esm
最佳实践建议
-
Python版本选择:建议使用Python 3.7-3.10版本,这是大多数深度学习框架最稳定的支持范围。
-
环境隔离:始终为ESM创建独立的环境,避免与其他项目的依赖冲突。
-
安装顺序:可以先安装PyTorch和torchvision,再安装ESM,有时能更好地控制版本匹配。
-
CUDA兼容性:如果使用GPU,确保PyTorch版本与CUDA驱动兼容。
技术深度解析
ESM作为蛋白质领域的预训练模型,其底层依赖PyTorch进行高效计算。torchvision虽然是计算机视觉库,但ESM可能使用其中的一些图像处理技术来处理蛋白质结构数据或可视化。这种跨领域的依赖关系增加了安装复杂度。
Python 3.13作为较新版本,可能尚未被PyTorch生态系统完全支持,这也是推荐使用Python 3.10的原因。conda-forge通道提供了更全面的科学计算包,有助于解决依赖关系。
总结
安装ESM这类复杂的科学计算包时,环境配置是关键。通过选择合适的Python版本、使用conda环境隔离、控制安装顺序,可以避免大多数依赖冲突问题。对于生物信息学工具链,保持环境的专一性和版本可控性尤为重要。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









