ESM蛋白质语言模型安装问题分析与解决方案
问题背景
ESM(Evolutionary Scale Modeling)是Meta AI开发的一系列蛋白质语言模型,能够对蛋白质序列进行表示学习和结构预测。最近有用户在尝试安装ESM时遇到了依赖冲突问题,特别是在使用conda创建新环境后通过pip安装时出现torchvision依赖冲突。
错误现象分析
用户在Python 3.13环境下创建conda环境后,尝试通过pip安装ESM时遇到了以下核心错误:
ERROR: Cannot install esm==3.0.0 to esm==3.0.8 because these package versions have conflicting dependencies.
The conflict is caused by:
esm 3.0.8 depends on torchvision
...
错误表明所有ESM版本(3.0.0到3.0.8)都依赖torchvision,但pip无法解析这个依赖关系。
技术原因
-
Python版本兼容性:用户使用的是Python 3.13,这可能是导致问题的原因之一。ESM目前主要针对Python 3.7-3.10进行测试和优化。
-
PyTorch生态系统复杂性:ESM依赖PyTorch及其相关库(torchvision),这些库有严格的版本匹配要求,特别是在CUDA支持方面。
-
conda与pip混用问题:conda和pip的依赖解析机制不同,混合使用时可能出现冲突。
解决方案
根据项目维护者的建议和实际测试,推荐以下安装方法:
-
使用Python 3.10环境:
conda create -n esm python==3.10 conda activate esm -
通过pip安装ESM:
pip install esm -
完整环境配置示例:
conda create -n esm python==3.10 -c conda-forge ruff pyright clize polars conda activate esm pip install esm
最佳实践建议
-
Python版本选择:建议使用Python 3.7-3.10版本,这是大多数深度学习框架最稳定的支持范围。
-
环境隔离:始终为ESM创建独立的环境,避免与其他项目的依赖冲突。
-
安装顺序:可以先安装PyTorch和torchvision,再安装ESM,有时能更好地控制版本匹配。
-
CUDA兼容性:如果使用GPU,确保PyTorch版本与CUDA驱动兼容。
技术深度解析
ESM作为蛋白质领域的预训练模型,其底层依赖PyTorch进行高效计算。torchvision虽然是计算机视觉库,但ESM可能使用其中的一些图像处理技术来处理蛋白质结构数据或可视化。这种跨领域的依赖关系增加了安装复杂度。
Python 3.13作为较新版本,可能尚未被PyTorch生态系统完全支持,这也是推荐使用Python 3.10的原因。conda-forge通道提供了更全面的科学计算包,有助于解决依赖关系。
总结
安装ESM这类复杂的科学计算包时,环境配置是关键。通过选择合适的Python版本、使用conda环境隔离、控制安装顺序,可以避免大多数依赖冲突问题。对于生物信息学工具链,保持环境的专一性和版本可控性尤为重要。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00