ESM蛋白质语言模型安装问题分析与解决方案
问题背景
ESM(Evolutionary Scale Modeling)是Meta AI开发的一系列蛋白质语言模型,能够对蛋白质序列进行表示学习和结构预测。最近有用户在尝试安装ESM时遇到了依赖冲突问题,特别是在使用conda创建新环境后通过pip安装时出现torchvision依赖冲突。
错误现象分析
用户在Python 3.13环境下创建conda环境后,尝试通过pip安装ESM时遇到了以下核心错误:
ERROR: Cannot install esm==3.0.0 to esm==3.0.8 because these package versions have conflicting dependencies.
The conflict is caused by:
esm 3.0.8 depends on torchvision
...
错误表明所有ESM版本(3.0.0到3.0.8)都依赖torchvision,但pip无法解析这个依赖关系。
技术原因
-
Python版本兼容性:用户使用的是Python 3.13,这可能是导致问题的原因之一。ESM目前主要针对Python 3.7-3.10进行测试和优化。
-
PyTorch生态系统复杂性:ESM依赖PyTorch及其相关库(torchvision),这些库有严格的版本匹配要求,特别是在CUDA支持方面。
-
conda与pip混用问题:conda和pip的依赖解析机制不同,混合使用时可能出现冲突。
解决方案
根据项目维护者的建议和实际测试,推荐以下安装方法:
-
使用Python 3.10环境:
conda create -n esm python==3.10 conda activate esm
-
通过pip安装ESM:
pip install esm
-
完整环境配置示例:
conda create -n esm python==3.10 -c conda-forge ruff pyright clize polars conda activate esm pip install esm
最佳实践建议
-
Python版本选择:建议使用Python 3.7-3.10版本,这是大多数深度学习框架最稳定的支持范围。
-
环境隔离:始终为ESM创建独立的环境,避免与其他项目的依赖冲突。
-
安装顺序:可以先安装PyTorch和torchvision,再安装ESM,有时能更好地控制版本匹配。
-
CUDA兼容性:如果使用GPU,确保PyTorch版本与CUDA驱动兼容。
技术深度解析
ESM作为蛋白质领域的预训练模型,其底层依赖PyTorch进行高效计算。torchvision虽然是计算机视觉库,但ESM可能使用其中的一些图像处理技术来处理蛋白质结构数据或可视化。这种跨领域的依赖关系增加了安装复杂度。
Python 3.13作为较新版本,可能尚未被PyTorch生态系统完全支持,这也是推荐使用Python 3.10的原因。conda-forge通道提供了更全面的科学计算包,有助于解决依赖关系。
总结
安装ESM这类复杂的科学计算包时,环境配置是关键。通过选择合适的Python版本、使用conda环境隔离、控制安装顺序,可以避免大多数依赖冲突问题。对于生物信息学工具链,保持环境的专一性和版本可控性尤为重要。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0106AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









