ESM蛋白质语言模型安装问题分析与解决方案
问题背景
ESM(Evolutionary Scale Modeling)是Meta AI开发的一系列蛋白质语言模型,能够对蛋白质序列进行表示学习和结构预测。最近有用户在尝试安装ESM时遇到了依赖冲突问题,特别是在使用conda创建新环境后通过pip安装时出现torchvision依赖冲突。
错误现象分析
用户在Python 3.13环境下创建conda环境后,尝试通过pip安装ESM时遇到了以下核心错误:
ERROR: Cannot install esm==3.0.0 to esm==3.0.8 because these package versions have conflicting dependencies.
The conflict is caused by:
    esm 3.0.8 depends on torchvision
    ...
错误表明所有ESM版本(3.0.0到3.0.8)都依赖torchvision,但pip无法解析这个依赖关系。
技术原因
- 
Python版本兼容性:用户使用的是Python 3.13,这可能是导致问题的原因之一。ESM目前主要针对Python 3.7-3.10进行测试和优化。
 - 
PyTorch生态系统复杂性:ESM依赖PyTorch及其相关库(torchvision),这些库有严格的版本匹配要求,特别是在CUDA支持方面。
 - 
conda与pip混用问题:conda和pip的依赖解析机制不同,混合使用时可能出现冲突。
 
解决方案
根据项目维护者的建议和实际测试,推荐以下安装方法:
- 
使用Python 3.10环境:
conda create -n esm python==3.10 conda activate esm - 
通过pip安装ESM:
pip install esm - 
完整环境配置示例:
conda create -n esm python==3.10 -c conda-forge ruff pyright clize polars conda activate esm pip install esm 
最佳实践建议
- 
Python版本选择:建议使用Python 3.7-3.10版本,这是大多数深度学习框架最稳定的支持范围。
 - 
环境隔离:始终为ESM创建独立的环境,避免与其他项目的依赖冲突。
 - 
安装顺序:可以先安装PyTorch和torchvision,再安装ESM,有时能更好地控制版本匹配。
 - 
CUDA兼容性:如果使用GPU,确保PyTorch版本与CUDA驱动兼容。
 
技术深度解析
ESM作为蛋白质领域的预训练模型,其底层依赖PyTorch进行高效计算。torchvision虽然是计算机视觉库,但ESM可能使用其中的一些图像处理技术来处理蛋白质结构数据或可视化。这种跨领域的依赖关系增加了安装复杂度。
Python 3.13作为较新版本,可能尚未被PyTorch生态系统完全支持,这也是推荐使用Python 3.10的原因。conda-forge通道提供了更全面的科学计算包,有助于解决依赖关系。
总结
安装ESM这类复杂的科学计算包时,环境配置是关键。通过选择合适的Python版本、使用conda环境隔离、控制安装顺序,可以避免大多数依赖冲突问题。对于生物信息学工具链,保持环境的专一性和版本可控性尤为重要。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00