开源项目安装与配置指南——StackOverflow-Question-Code-Dataset
2025-04-20 13:09:33作者:范靓好Udolf
1. 项目基础介绍
StackOverflow-Question-Code-Dataset 是一个开源数据集项目,旨在提供从 Stack Overflow 网站自动挖掘的 Python 和 SQL 领域的问题与代码对。该数据集是目前为止最大的,包含大约 148K 个 Python 和 120K 个 SQL 领域的问题-代码对,可用于自然语言处理、机器学习以及编程语言研究等领域。
该项目主要使用的编程语言是 Python。
2. 项目使用的关键技术和框架
- Bi-View Hierarchical Neural Network(双向层次神经网络): 用于从 Stack Overflow 网站挖掘问题-代码对。
- NLTK(自然语言处理工具包): 用于文本处理。
- Tensorflow: 用于神经网络模型的训练。
- Pickle: Python 的一个模块,用于序列化和反序列化 Python 对象结构。
3. 项目安装和配置的准备工作及详细步骤
准备工作
- 确保你的系统中已安装 Python 2.7(项目要求版本)。
- 安装 NLTK 和 Tensorflow。你可以使用以下命令安装:
pip install nltk tensorflow==1.0.1 - 获取 Stack Overflow 的原始数据或者使用项目提供的处理过的数据。
安装步骤
步骤 1:克隆项目仓库
首先,你需要将项目克隆到本地。打开终端,运行以下命令:
git clone https://github.com/LittleYUYU/StackOverflow-Question-Code-Dataset.git
步骤 2:准备词汇表
进入项目目录,你将需要准备文本和代码的词汇表。这通常涉及到从数据中提取所有的唯一单词或标记,并为它们创建一个索引。
cd StackOverflow-Question-Code-Dataset/
# 针对文本和代码分别创建词汇表,具体命令取决于项目文件结构和代码
步骤 3:安装 SQL 解析器
如果需要处理 SQL 数据,你可能需要安装 SQL 解析器。进入相应的目录并运行安装脚本:
cd data_processing/codenn/src/sqlparse/
python setup.py install
步骤 4:处理代码片段
处理代码片段的脚本位于 data_processing 目录中。运行以下命令来处理代码:
cd data_processing
python code_processing.py
步骤 5:训练 BiV-HNN 模型
根据项目要求,你可能需要训练 BiV-HNN 模型。具体命令如下:
cd ../../BiV_HNN/
python run.py --train ...
这里的 ... 代表具体的训练参数,需根据实际情况和项目文档中的说明进行调整。
步骤 6:测试模型
完成训练后,你可以修改 run.py 文件中的 test 函数来测试模型,然后运行以下命令:
python run.py --test ...
同样,这里的 ... 代表具体的测试参数。
通过以上步骤,你应该能够成功地安装和配置 StackOverflow-Question-Code-Dataset 项目,并开始使用其中的数据集和工具。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219