OpenBMB/OmniLMM项目中视觉模型微调后的权重使用问题解析
在OpenBMB/OmniLMM项目中使用MiniCPM-Llama3-V 2.5模型进行视觉模型微调时,开发者可能会遇到一些技术挑战。本文将深入分析只微调视觉模型而不微调LLM时产生的权重使用问题,并提供解决方案。
问题背景
当开发者使用以下参数配置进行模型训练时:
--tune_vision true
--tune_llm false
--use_lora false
这种配置意味着只对视觉模型部分进行微调,而不对LLM语言模型部分进行全量或LoRA微调。训练完成后,尝试加载模型时可能会遇到AttributeError: 'MiniCPMVTokenizerFast' object has no attribute 'tokenizer'
的错误提示。
技术分析
这个错误表明Tokenizer对象在加载时缺少了预期的属性。经过深入分析,我们发现这通常是由于模型保存路径中缺少必要的文件导致的。当只微调视觉模型时,保存的模型权重可能不包含完整的模型结构信息,特别是Tokenizer相关的组件。
解决方案
-
文件完整性检查:首先需要对比微调后的模型保存路径与原始模型路径,确认是否存在文件缺失情况。常见的缺失文件可能包括:
- tokenizer配置文件
- 特殊token定义文件
- 词汇表文件
-
文件补充方法:如果发现缺失文件,可以从原始模型路径中复制相应文件到微调后的模型保存路径。这通常包括:
- tokenizer_config.json
- special_tokens_map.json
- vocab相关文件
-
加载策略调整:在代码层面,可以尝试先加载原始模型,然后仅替换视觉部分的权重,而不是直接加载微调后的完整模型。
最佳实践建议
-
训练前准备:在进行视觉模型微调前,建议完整备份原始模型的所有文件,以便后续需要时进行参考或恢复。
-
模型保存验证:训练完成后,应该验证保存的模型是否包含所有必要组件,特别是当只微调部分模型时。
-
渐进式微调:对于复杂模型如MiniCPM-Llama3-V 2.5,建议采用渐进式微调策略,先验证完整模型的加载和推理流程,再逐步引入部分微调。
深入理解
这种现象揭示了多模态模型微调中的一个重要技术细节:当只微调模型的部分组件时,需要特别注意模型结构的完整性保持。视觉模型和语言模型虽然在功能上相对独立,但在模型架构和加载机制上可能存在依赖关系。
对于开发者而言,理解这种依赖关系有助于更好地规划微调策略,避免类似问题的发生。同时,这也提示我们在设计多模态模型架构时,需要考虑组件间的解耦和独立加载能力。
通过遵循上述建议和解决方案,开发者可以更顺利地完成视觉模型的微调工作,并正确使用训练得到的权重。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









