首页
/ XTuner项目中梯度检查点(Gradient Checkpointing)的实现原理与配置方法

XTuner项目中梯度检查点(Gradient Checkpointing)的实现原理与配置方法

2025-06-13 16:32:18作者:宗隆裙

梯度检查点(Gradient Checkpointing)是一种在深度学习训练过程中显著减少显存占用的技术,在XTuner项目中得到了有效应用。本文将深入解析XTuner如何实现这一技术特性。

梯度检查点技术原理

梯度检查点技术通过牺牲部分计算性能来换取显存优化。其核心思想是:在前向传播过程中不保存所有中间激活值,而是在反向传播时重新计算这些激活值。这种方法可以将显存占用从O(n)降低到O(√n),其中n是网络层数。

XTuner中的实现方式

与许多基于DeepSpeed的项目不同,XTuner采用了MMEngine框架的实现方案,因此其梯度检查点配置不在DeepSpeed配置文件中。XTuner在模型训练代码层面实现了这一功能,具体体现在xtuner/model/目录下的各个训练脚本中(如sft.py)。

默认配置与修改方法

XTuner默认启用了梯度检查点功能,这是通过模型训练脚本中的参数配置实现的。开发者无需额外配置即可享受这一优化带来的显存节省优势。如需调整这一设置,可以:

  1. 定位到相关模型训练脚本
  2. 查找梯度检查点相关参数(通常为布尔型变量)
  3. 根据实际需求修改其值

技术优势与适用场景

XTuner采用这种实现方式具有以下优势:

  • 与MMEngine深度集成,稳定性更高
  • 不依赖特定加速框架,兼容性更好
  • 默认开启降低用户使用门槛

该技术特别适合以下场景:

  • 显存受限环境下训练大模型
  • 需要增大batch size但显存不足
  • 训练超深层网络结构

总结

XTuner通过MMEngine框架实现了高效的梯度检查点功能,默认开启的设计让用户无需额外配置即可享受显存优化。这种实现方式既保持了框架的灵活性,又提供了开箱即用的优化体验,是XTuner项目在资源优化方面的重要设计之一。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
61
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133