XTuner项目中梯度检查点(Gradient Checkpointing)的实现原理与配置方法
2025-06-13 08:20:36作者:宗隆裙
梯度检查点(Gradient Checkpointing)是一种在深度学习训练过程中显著减少显存占用的技术,在XTuner项目中得到了有效应用。本文将深入解析XTuner如何实现这一技术特性。
梯度检查点技术原理
梯度检查点技术通过牺牲部分计算性能来换取显存优化。其核心思想是:在前向传播过程中不保存所有中间激活值,而是在反向传播时重新计算这些激活值。这种方法可以将显存占用从O(n)降低到O(√n),其中n是网络层数。
XTuner中的实现方式
与许多基于DeepSpeed的项目不同,XTuner采用了MMEngine框架的实现方案,因此其梯度检查点配置不在DeepSpeed配置文件中。XTuner在模型训练代码层面实现了这一功能,具体体现在xtuner/model/目录下的各个训练脚本中(如sft.py)。
默认配置与修改方法
XTuner默认启用了梯度检查点功能,这是通过模型训练脚本中的参数配置实现的。开发者无需额外配置即可享受这一优化带来的显存节省优势。如需调整这一设置,可以:
- 定位到相关模型训练脚本
- 查找梯度检查点相关参数(通常为布尔型变量)
- 根据实际需求修改其值
技术优势与适用场景
XTuner采用这种实现方式具有以下优势:
- 与MMEngine深度集成,稳定性更高
- 不依赖特定加速框架,兼容性更好
- 默认开启降低用户使用门槛
该技术特别适合以下场景:
- 显存受限环境下训练大模型
- 需要增大batch size但显存不足
- 训练超深层网络结构
总结
XTuner通过MMEngine框架实现了高效的梯度检查点功能,默认开启的设计让用户无需额外配置即可享受显存优化。这种实现方式既保持了框架的灵活性,又提供了开箱即用的优化体验,是XTuner项目在资源优化方面的重要设计之一。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1