Joda-Time迁移至Java.time时ZonedDateTime和PeriodDuration的XML序列化问题
2025-06-09 08:26:38作者:鲍丁臣Ursa
概述
在从Joda-Time库迁移到Java.time(Java 8+)的过程中,开发者可能会遇到XML序列化的问题。特别是当尝试使用XMLEncoder序列化ZonedDateTime和PeriodDuration对象时,由于这些类没有适当的构造函数,会导致序列化失败。
问题背景
Joda-Time库提供了DateTime和Period类,它们可以通过XMLEncoder进行序列化,因为:
- 这些类有接受基本类型参数的构造函数
- 可以方便地通过getMillis()和toString()方法获取可序列化的值
然而,Java.time中的ZonedDateTime和PeriodDuration类:
- 没有直接接受基本类型参数的构造函数
- 设计上更注重不可变性和线程安全
- 序列化机制与Joda-Time不同
解决方案分析
1. 使用适配器模式
可以为ZonedDateTime和PeriodDuration创建适配器类,这些适配器类:
- 包含原始时间对象的必要信息
- 提供简单的构造函数用于反序列化
- 实现与原始对象的相互转换
public class ZonedDateTimeAdapter {
private long epochMilli;
private String zoneId;
// 构造函数、getter和转换方法
}
public class PeriodDurationAdapter {
private String durationString;
// 构造函数、getter和转换方法
}
2. 自定义PersistenceDelegate
虽然原始问题中的方法对Java.time类不起作用,但可以通过更复杂的PersistenceDelegate实现:
theEncoder.setPersistenceDelegate(ZonedDateTime.class, new PersistenceDelegate() {
@Override
protected Expression instantiate(Object oldInstance, Encoder out) {
ZonedDateTime zdt = (ZonedDateTime) oldInstance;
return new Expression(zdt, ZonedDateTime.class, "ofInstant",
new Object[]{
Instant.ofEpochMilli(zdt.toInstant().toEpochMilli()),
zdt.getZone()
});
}
});
3. 使用标准序列化机制
考虑使用Java标准序列化或第三方库如Jackson来处理时间对象的序列化:
ObjectMapper mapper = new ObjectMapper();
mapper.registerModule(new JavaTimeModule());
String json = mapper.writeValueAsString(yourObject);
最佳实践建议
- 避免使用XMLEncoder:对于现代Java应用,考虑使用JSON或其他更现代的序列化格式
- 统一时间处理:在整个应用中采用一致的时间处理策略
- 考虑向后兼容:如果必须支持旧格式,实现双向转换层
- 文档化变更:明确记录时间处理方式的变更,便于团队协作
迁移注意事项
- 测试覆盖:确保所有时间相关功能的测试用例都得到验证
- 性能考量:Java.time在某些操作上可能比Joda-Time有性能差异
- 时区处理:特别注意时区相关的业务逻辑是否在迁移后保持一致
- 依赖检查:确认所有第三方库都已支持Java.time
通过以上方法和注意事项,开发者可以顺利完成从Joda-Time到Java.time的迁移,并解决XML序列化相关问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873