Modin项目TPC-H查询性能问题分析与优化
2025-05-23 16:13:39作者:裴麒琰
概述
在数据分析领域,Modin作为一个基于Ray或Dask的Pandas替代方案,旨在通过并行计算提升数据处理性能。然而,在实际应用中,用户发现Modin在执行TPC-H基准测试查询时出现了性能下降和结果不正确的问题。本文将深入分析这些问题背后的技术原因,并介绍Modin团队采取的优化措施。
问题背景
TPC-H是业界广泛使用的决策支持基准测试,包含多组复杂的分析查询。用户在使用Modin执行TPC-H的Q1和Q6查询时,发现了以下问题:
- 性能问题:Modin在Ray和Dask后端上的查询执行时间明显长于原生Pandas
- 正确性问题:Q1查询的结果列名与值不匹配
技术分析
性能瓶颈分析
经过Modin团队深入分析,发现了几个关键性能瓶颈:
-
元数据列表(MetaList)频繁物化问题:
- 在延迟执行模式下,分区元数据(长度/宽度缓存)由未物化的MetaList表示
- 访问分区元数据会导致MetaList物化
- 计算整个数据帧的行长度时,会顺序请求每个分区的缓存,导致MetaList计算无法并行化
-
二元操作中的不必要copartition:
- 执行二元操作时会调用._copartition()方法
- 该方法会强制计算实际索引和行长度
- 当操作数来自同一数据帧时,这种检查可以省略
-
索引传播中的行长度计算:
- 当数据帧设置._deferred_columns标志时,几乎每个操作前都会调用._propagate_index_objs(axis=1)
- 该方法会显式调用空分区过滤,强制计算row_lengths
正确性问题分析
Q1查询结果不正确的原因是列名与值不匹配。这是由于Modin在分组聚合操作中对列处理的逻辑存在缺陷,特别是在使用延迟执行模式时。
优化方案
Modin团队针对上述问题实施了多项优化:
-
MetaList优化:
- 实现延迟获取机制,避免立即物化
- 使用远程函数异步获取元数据
-
copartition优化:
- 识别同源数据帧,跳过不必要的分区检查
- 重用已有索引比较机制
-
索引传播优化:
- 修改._filter_empties调用,避免强制计算元数据
- 实现延迟的列传播
-
查询重写建议:
- 对于包含长字符串列的查询,先过滤掉不需要的列
- 减少序列化/反序列化开销
优化效果
在Modin 0.28.0版本中,这些优化带来了显著的性能提升:
-
Q1查询:
- 16核环境下性能提升约40%
- 查询执行时间从5.0秒降至3.7秒
-
Q6查询:
- 通过提前列过滤优化序列化性能
- 但仍建议在5秒以下的短任务中使用原生Pandas
使用建议
基于这些发现,Modin团队给出以下建议:
-
硬件配置:
- 推荐至少8核以上环境使用Modin
- 4核环境性能优势不明显
-
查询优化:
- 对于包含长字符串的操作,先过滤无关列
- 复杂查询前执行预热操作
-
版本选择:
- 使用0.28.0及以上版本
- 启用MODIN_RANGE_PARTITIONING_GROUPBY模式
结论
通过对TPC-H查询性能问题的深入分析,Modin团队识别并修复了多个影响性能的关键问题。这些优化不仅解决了特定查询的性能问题,也提升了Modin框架整体的执行效率。未来,团队将继续优化短任务场景下的性能,并改进字符串处理的效率,使Modin能在更广泛的应用场景中发挥并行计算的优势。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
141
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111