TensorRT中CUDA Graph推理的动态批处理支持
概述
在深度学习推理优化领域,TensorRT作为NVIDIA推出的高性能推理引擎,提供了多种加速技术。其中,CUDA Graph技术能够显著减少内核启动开销,提高推理性能。然而,当需要支持动态批处理时,开发者往往会遇到一些技术挑战。
CUDA Graph与动态批处理的兼容性
CUDA Graph通过捕获一系列CUDA操作来构建可重用的执行图,这种技术特别适合固定计算模式的场景。但在实际应用中,输入数据的批处理大小往往是动态变化的,这与CUDA Graph的静态特性产生了矛盾。
解决方案
针对动态批处理需求,TensorRT提供了以下解决方案:
-
重新捕获机制:当输入形状发生变化时,必须重新捕获CUDA Graph。这是因为内部状态会随着输入形状的改变而变化。
-
多上下文共享内存:最佳实践是为每个捕获的图使用一个执行上下文,并通过createExecutionContextWithoutDeviceMemory()在上下文之间共享内存。这种方法可以避免重复分配设备内存,提高资源利用率。
实现注意事项
在实现多上下文共享内存时,开发者需要注意:
-
并发控制:当多个上下文共享同一块内存时,必须确保不会发生并发执行。某些归约内核在写入共享内存时可能会出现竞争条件,导致未定义行为。
-
性能权衡:虽然重新捕获CUDA Graph会增加一些开销,但对于批处理大小变化不频繁的场景,这种代价通常是可以接受的。
优化建议
-
对于批处理大小变化有限的场景,可以预先捕获几个常见大小的CUDA Graph,运行时根据实际输入选择最接近的图执行。
-
在内存允许的情况下,维护多个不同批处理大小的CUDA Graph实例,避免频繁的图重建操作。
-
合理规划内存共享策略,平衡内存使用和并发性能之间的关系。
结论
TensorRT结合CUDA Graph技术为深度学习推理提供了显著的性能提升。通过合理的架构设计和实现策略,开发者可以在保持高性能的同时,实现对动态批处理的支持。理解这些技术细节和最佳实践,将帮助开发者构建更高效、更灵活的推理系统。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









