Workiva/EVA项目中的属性建模设计解析:与SQL数据库的对比分析
引言
在数据建模领域,传统的关系型数据库(SQL)和新兴的属性建模(EAV)方法各有特点。本文将以Workiva/EVA项目中的属性建模设计为例,通过一个个人消费追踪应用的具体场景,深入分析两种建模方式的差异和各自的优势。
应用场景描述
我们以一个个人消费追踪应用为例,该应用需要处理来自三种不同来源的消费数据:
- 收据照片的OCR识别结果
- 银行账户的每日CSV导入
- 无收据时的现金消费手动录入
应用需要满足以下核心需求:
- 允许用户修正错误数据(通过手动覆盖原始条目)
- 生成月度消费报告
- 追踪每笔消费的原始来源(包括所有手动修改记录)
SQL数据库实现方案
基础表结构设计
初始的消费表(expenses)设计如下:
CREATE TABLE expenses (
id INTEGER PRIMARY KEY,
amount REAL,
made_at TIMESTAMP
);
这种设计无法追踪数据来源,因此需要引入来源表(sources):
CREATE TABLE sources (
id INTEGER PRIMARY KEY
);
ALTER TABLE expenses ADD COLUMN source_id INTEGER REFERENCES sources(id);
类层次结构映射
在面向对象设计中,我们可以将不同来源抽象为类层次结构:
Source (基类)
├── ManualEntry (手动录入)
├── ReceiptItem (收据项目)
└── CSVRow (CSV行项目)
在SQL中有三种常见的类层次映射方式:
- 整个类层次使用单一表
- 每个子类使用单独的表
- 每个具体类使用单独的表
数据修正的实现困境
当用户需要修正错误数据时(如OCR将$8.99识别为$899),SQL实现面临两个选择:
-
UPDATE方案:直接更新错误记录
- 优点:查询逻辑简单
- 缺点:丢失历史记录,违反可追溯性要求
-
INSERT方案:插入新记录并标记覆盖关系
- 优点:保留完整历史
- 缺点:需要复杂的查询逻辑来获取"有效"数据
最终SQL方案
采用INSERT方案后,我们需要扩展数据模型:
ALTER TABLE sources ADD COLUMN overrides_id INTEGER REFERENCES sources(id);
对应的查询也变得复杂:
SELECT SUM(amount) FROM expenses e
JOIN sources s ON s.id = e.source_id
WHERE NOT EXISTS (
SELECT * FROM sources s2 WHERE s2.overrides_id = s.id
)
AND made_at BETWEEN '2018-01-01' AND '2018-02-01';
EVA属性建模方案
基本概念
EVA采用基于事实的三元组(实体-属性-值)模型,实际上是五元组(包含事务ID和操作类型)。在我们的消费追踪应用中,可以定义以下事实类型:
| 实体 | 属性 | 值类型 |
|---|---|---|
| is-on-receipt | ||
| from-import | ||
| made-at | ||
| has-text | ||
| has-amount | ||
| overrides |
数据表示示例
-
收据项目(Ref-1):
[Ref-1, is-on-receipt, Ref-2] [Ref-1, has-text, "Beer $899"] [Ref-1, has-amount, 899.0] -
手动修正(Ref-3):
[Ref-3, overrides, Ref-1] [Ref-3, has-text, "Fixes $899->$8.99"] [Ref-1, has-amount, 8.99] # 直接修改原实体的值
查询实现
基础月度报告查询:
[:find (sum ?amount) :where
[?e :has-amount ?amount]
[?e :made-at ?t]
[(in-range? ?t ['2018-01-01' '2018-02-01'])]
EVA的独特之处在于,它通过"影子"机制处理数据更新 - 新事实不会删除旧事实,而是使其不可见但仍可查询。这种机制天然支持完整的历史追溯。
核心差异分析
-
引用类型:
- SQL中的外键是强类型的(特定表和列)
- EVA中的引用是多态的,不依赖类型信息
-
类型系统:
- SQL需要显式定义表结构和关系
- EVA可以通过上下文推断实体类型
-
关系复用:
- SQL中相同语义的关系需要在不同表中重复定义
- EVA中的属性可以跨实体类型复用
-
历史数据支持:
- SQL需要额外设计来实现历史追踪
- EVA内置完整的历史记录和时间旅行功能
结论
Workiva/EVA项目的属性建模方法提供了一种灵活的数据表示方式,特别适合需要高度动态模式、完整历史追溯和多态关系的应用场景。相比传统SQL方法,EVA在以下方面表现出色:
- 模式演化更加灵活
- 历史数据管理更加简单
- 复杂关系的表达更加直观
然而,这种灵活性也带来了一定的学习曲线,开发人员需要适应不同的数据建模思维方式。对于需要严格模式约束和高性能事务处理的应用,传统SQL可能仍然是更好的选择。
通过这个消费追踪应用的例子,我们可以清晰地看到两种方法在设计理念和实现细节上的差异,为技术选型提供了有价值的参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00