DragableGridView 项目教程
2024-08-27 11:53:41作者:农烁颖Land
1. 项目的目录结构及介绍
DragableGridView 项目的目录结构如下:
DragableGridView/
├── lib/
│ ├── main.dart
│ ├── dragable_gridview.dart
│ └── ...
├── test/
│ └── ...
├── pubspec.yaml
└── README.md
目录结构介绍
-
lib/: 包含项目的主要代码文件。
- main.dart: 项目的启动文件。
- dragable_gridview.dart: 实现可拖拽网格视图的核心文件。
- ...: 其他辅助文件。
-
test/: 包含项目的测试代码文件。
-
pubspec.yaml: 项目的配置文件,包含依赖管理、资源配置等。
-
README.md: 项目的说明文档。
2. 项目的启动文件介绍
main.dart
main.dart 是项目的启动文件,负责初始化应用并运行。以下是 main.dart 的基本结构:
import 'package:flutter/material.dart';
import 'dragable_gridview.dart';
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'DragableGridView Demo',
theme: ThemeData(
primarySwatch: Colors.blue,
),
home: DragableGridView(),
);
}
}
文件介绍
- main(): 应用的入口函数,调用
runApp方法启动应用。 - MyApp: 应用的根组件,定义应用的标题、主题和主页。
- DragableGridView: 应用的主页组件,实现可拖拽网格视图。
3. 项目的配置文件介绍
pubspec.yaml
pubspec.yaml 是项目的配置文件,包含依赖管理、资源配置等。以下是 pubspec.yaml 的基本内容:
name: dragable_gridview
description: A new Flutter project.
version: 1.0.0+1
environment:
sdk: ">=2.12.0 <3.0.0"
dependencies:
flutter:
sdk: flutter
cupertino_icons: ^1.0.2
dev_dependencies:
flutter_test:
sdk: flutter
flutter_lints: ^1.0.0
flutter:
uses-material-design: true
文件介绍
- name: 项目的名称。
- description: 项目的描述。
- version: 项目的版本号。
- environment: 指定 Dart SDK 的版本范围。
- dependencies: 项目的依赖库,包括 Flutter SDK 和其他第三方库。
- dev_dependencies: 开发环境的依赖库。
- flutter: Flutter 相关的配置,如启用 Material Design。
以上是 DragableGridView 项目的目录结构、启动文件和配置文件的介绍。希望这份教程能帮助你更好地理解和使用该项目。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
317
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K