DeepSeek-R1模型W8A16量化实践与问题解决
2025-04-28 10:17:20作者:尤峻淳Whitney
在大型语言模型的实际部署中,模型量化是降低计算资源需求、提高推理效率的重要手段。本文将分享在DeepSeek-R1模型上实施W8A16(权重8位、激活16位)量化的完整过程,以及遇到的技术问题及其解决方案。
量化流程概述
DeepSeek-R1是一个参数规模达到671B的MoE(混合专家)模型。我们的量化目标是从原始FP8版本转换为W8A16格式,主要步骤如下:
- 从官方仓库获取FP8版本的DeepSeek-R1模型
- 使用专用转换脚本将FP8转换为BF16格式作为中间步骤
- 应用llm-compressor工具进行W8A16量化
量化实施细节
量化过程使用了llm-compressor工具库中的量化模块。核心代码配置如下:
from transformers import AutoTokenizer
from modeling_deepseek import DeepseekV3ForCausalLM
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
MODEL_ID = "/data/models/DeepSeek-R1-bf16/DeepSeek-R1-bf16/"
OUTPUT_DIR = "/data/models/DeepSeek-R1-w8a16"
model = DeepseekV3ForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto", trust_remote_code=True
)
recipe = QuantizationModifier(
targets="Linear",
scheme="W8A16",
ignore=["lm_head", "re:.*mlp.gate$"]
)
oneshot(
model=model,
recipe=recipe,
tokenizer=AutoTokenizer.from_pretrained(MODEL_ID),
output_dir=OUTPUT_DIR,
)
这段代码实现了对模型中所有Linear层的W8A16量化,同时排除了lm_head和特定模式的MLP门控层。
关键技术问题与解决
在量化后的模型部署阶段,我们遇到了一个关键错误:
AttributeError: Layer 'ColumnParallelLinear(in_features=512, output_features=2048, bias=False, tp_size=16, gather_output=False)' has neither weight nor qweight
经过分析,发现问题根源在于vLLM框架的权重获取逻辑不兼容量化后的权重命名方式。量化后的模型权重被命名为"weight_packed",而vLLM框架默认只检查"weight"和"qweight"属性。
解决方案是修改vLLM框架中的权重获取函数,增加对"weight_packed"属性的支持:
def get_layer_weight(layer):
if hasattr(layer, "weight"):
return layer.weight
elif hasattr(layer, "qweight"):
return layer.qweight
elif hasattr(layer, "weight_packed"):
return layer.weight_packed
else:
raise AttributeError(
f"Layer '{layer}' has neither weight nor qweight")
分布式部署实践
在2节点、每节点8块A100 GPU的环境下,我们采用Ray框架实现多节点分布式部署。关键部署步骤如下:
-
主节点启动Ray服务:
NCCL_IB_DISABLE=1 NCCL_SOCKET_IFNAME="ens81f0" GLOO_SOCKET_IFNAME="ens81f0" ray start --head --dashboard-host 0.0.0.0 -
工作节点加入集群:
NCCL_IB_DISABLE=1 NCCL_SOCKET_IFNAME="ens81f0" GLOO_SOCKET_IFNAME="ens81f0" ray start --address='<your-ip>:<port>' -
设置环境变量:
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}') -
启动vLLM服务:
NCCL_IB_DISABLE=1 NCCL_DEBUG=INFO python -m vllm.entrypoints.openai.api_server \ --model /data/models/DeepSeek-R1-w8a16 \ --trust-remote-code \ --served-model-name deepseek-r1-w8a16 \ --tensor-parallel-size 8 \ --pipeline-parallel-size 2 \ --gpu-memory-utilization 0.85 \ --uvicorn-log-level debug \ --max-model-len 16000 \ --host 0.0.0.0 \ --port 11000 \ --dtype float16
总结
通过对DeepSeek-R1模型的W8A16量化实践,我们验证了大型MoE模型量化的可行性。关键点包括:选择合适的量化策略、处理量化后的权重命名问题、以及优化分布式部署配置。这些经验对于其他大型语言模型的量化部署具有参考价值。
在实际应用中,量化后的模型在保持较高推理质量的同时,显著降低了硬件资源需求,使得671B参数的模型可以在相对有限的GPU资源上高效运行。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660