DeepSeek-R1模型W8A16量化实践与问题解决
2025-04-28 23:03:13作者:尤峻淳Whitney
在大型语言模型的实际部署中,模型量化是降低计算资源需求、提高推理效率的重要手段。本文将分享在DeepSeek-R1模型上实施W8A16(权重8位、激活16位)量化的完整过程,以及遇到的技术问题及其解决方案。
量化流程概述
DeepSeek-R1是一个参数规模达到671B的MoE(混合专家)模型。我们的量化目标是从原始FP8版本转换为W8A16格式,主要步骤如下:
- 从官方仓库获取FP8版本的DeepSeek-R1模型
- 使用专用转换脚本将FP8转换为BF16格式作为中间步骤
- 应用llm-compressor工具进行W8A16量化
量化实施细节
量化过程使用了llm-compressor工具库中的量化模块。核心代码配置如下:
from transformers import AutoTokenizer
from modeling_deepseek import DeepseekV3ForCausalLM
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
MODEL_ID = "/data/models/DeepSeek-R1-bf16/DeepSeek-R1-bf16/"
OUTPUT_DIR = "/data/models/DeepSeek-R1-w8a16"
model = DeepseekV3ForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto", trust_remote_code=True
)
recipe = QuantizationModifier(
targets="Linear",
scheme="W8A16",
ignore=["lm_head", "re:.*mlp.gate$"]
)
oneshot(
model=model,
recipe=recipe,
tokenizer=AutoTokenizer.from_pretrained(MODEL_ID),
output_dir=OUTPUT_DIR,
)
这段代码实现了对模型中所有Linear层的W8A16量化,同时排除了lm_head和特定模式的MLP门控层。
关键技术问题与解决
在量化后的模型部署阶段,我们遇到了一个关键错误:
AttributeError: Layer 'ColumnParallelLinear(in_features=512, output_features=2048, bias=False, tp_size=16, gather_output=False)' has neither weight nor qweight
经过分析,发现问题根源在于vLLM框架的权重获取逻辑不兼容量化后的权重命名方式。量化后的模型权重被命名为"weight_packed",而vLLM框架默认只检查"weight"和"qweight"属性。
解决方案是修改vLLM框架中的权重获取函数,增加对"weight_packed"属性的支持:
def get_layer_weight(layer):
if hasattr(layer, "weight"):
return layer.weight
elif hasattr(layer, "qweight"):
return layer.qweight
elif hasattr(layer, "weight_packed"):
return layer.weight_packed
else:
raise AttributeError(
f"Layer '{layer}' has neither weight nor qweight")
分布式部署实践
在2节点、每节点8块A100 GPU的环境下,我们采用Ray框架实现多节点分布式部署。关键部署步骤如下:
-
主节点启动Ray服务:
NCCL_IB_DISABLE=1 NCCL_SOCKET_IFNAME="ens81f0" GLOO_SOCKET_IFNAME="ens81f0" ray start --head --dashboard-host 0.0.0.0
-
工作节点加入集群:
NCCL_IB_DISABLE=1 NCCL_SOCKET_IFNAME="ens81f0" GLOO_SOCKET_IFNAME="ens81f0" ray start --address='<your-ip>:<port>'
-
设置环境变量:
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
-
启动vLLM服务:
NCCL_IB_DISABLE=1 NCCL_DEBUG=INFO python -m vllm.entrypoints.openai.api_server \ --model /data/models/DeepSeek-R1-w8a16 \ --trust-remote-code \ --served-model-name deepseek-r1-w8a16 \ --tensor-parallel-size 8 \ --pipeline-parallel-size 2 \ --gpu-memory-utilization 0.85 \ --uvicorn-log-level debug \ --max-model-len 16000 \ --host 0.0.0.0 \ --port 11000 \ --dtype float16
总结
通过对DeepSeek-R1模型的W8A16量化实践,我们验证了大型MoE模型量化的可行性。关键点包括:选择合适的量化策略、处理量化后的权重命名问题、以及优化分布式部署配置。这些经验对于其他大型语言模型的量化部署具有参考价值。
在实际应用中,量化后的模型在保持较高推理质量的同时,显著降低了硬件资源需求,使得671B参数的模型可以在相对有限的GPU资源上高效运行。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
465

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
132
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
876
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
610
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4