DeepSeek-R1模型W8A16量化实践与问题解决
2025-04-28 23:09:49作者:尤峻淳Whitney
在大型语言模型的实际部署中,模型量化是降低计算资源需求、提高推理效率的重要手段。本文将分享在DeepSeek-R1模型上实施W8A16(权重8位、激活16位)量化的完整过程,以及遇到的技术问题及其解决方案。
量化流程概述
DeepSeek-R1是一个参数规模达到671B的MoE(混合专家)模型。我们的量化目标是从原始FP8版本转换为W8A16格式,主要步骤如下:
- 从官方仓库获取FP8版本的DeepSeek-R1模型
- 使用专用转换脚本将FP8转换为BF16格式作为中间步骤
- 应用llm-compressor工具进行W8A16量化
量化实施细节
量化过程使用了llm-compressor工具库中的量化模块。核心代码配置如下:
from transformers import AutoTokenizer
from modeling_deepseek import DeepseekV3ForCausalLM
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
MODEL_ID = "/data/models/DeepSeek-R1-bf16/DeepSeek-R1-bf16/"
OUTPUT_DIR = "/data/models/DeepSeek-R1-w8a16"
model = DeepseekV3ForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto", trust_remote_code=True
)
recipe = QuantizationModifier(
targets="Linear",
scheme="W8A16",
ignore=["lm_head", "re:.*mlp.gate$"]
)
oneshot(
model=model,
recipe=recipe,
tokenizer=AutoTokenizer.from_pretrained(MODEL_ID),
output_dir=OUTPUT_DIR,
)
这段代码实现了对模型中所有Linear层的W8A16量化,同时排除了lm_head和特定模式的MLP门控层。
关键技术问题与解决
在量化后的模型部署阶段,我们遇到了一个关键错误:
AttributeError: Layer 'ColumnParallelLinear(in_features=512, output_features=2048, bias=False, tp_size=16, gather_output=False)' has neither weight nor qweight
经过分析,发现问题根源在于vLLM框架的权重获取逻辑不兼容量化后的权重命名方式。量化后的模型权重被命名为"weight_packed",而vLLM框架默认只检查"weight"和"qweight"属性。
解决方案是修改vLLM框架中的权重获取函数,增加对"weight_packed"属性的支持:
def get_layer_weight(layer):
if hasattr(layer, "weight"):
return layer.weight
elif hasattr(layer, "qweight"):
return layer.qweight
elif hasattr(layer, "weight_packed"):
return layer.weight_packed
else:
raise AttributeError(
f"Layer '{layer}' has neither weight nor qweight")
分布式部署实践
在2节点、每节点8块A100 GPU的环境下,我们采用Ray框架实现多节点分布式部署。关键部署步骤如下:
-
主节点启动Ray服务:
NCCL_IB_DISABLE=1 NCCL_SOCKET_IFNAME="ens81f0" GLOO_SOCKET_IFNAME="ens81f0" ray start --head --dashboard-host 0.0.0.0
-
工作节点加入集群:
NCCL_IB_DISABLE=1 NCCL_SOCKET_IFNAME="ens81f0" GLOO_SOCKET_IFNAME="ens81f0" ray start --address='<your-ip>:<port>'
-
设置环境变量:
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
-
启动vLLM服务:
NCCL_IB_DISABLE=1 NCCL_DEBUG=INFO python -m vllm.entrypoints.openai.api_server \ --model /data/models/DeepSeek-R1-w8a16 \ --trust-remote-code \ --served-model-name deepseek-r1-w8a16 \ --tensor-parallel-size 8 \ --pipeline-parallel-size 2 \ --gpu-memory-utilization 0.85 \ --uvicorn-log-level debug \ --max-model-len 16000 \ --host 0.0.0.0 \ --port 11000 \ --dtype float16
总结
通过对DeepSeek-R1模型的W8A16量化实践,我们验证了大型MoE模型量化的可行性。关键点包括:选择合适的量化策略、处理量化后的权重命名问题、以及优化分布式部署配置。这些经验对于其他大型语言模型的量化部署具有参考价值。
在实际应用中,量化后的模型在保持较高推理质量的同时,显著降低了硬件资源需求,使得671B参数的模型可以在相对有限的GPU资源上高效运行。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44