解决kerl构建Erlang时man手册安装失败问题
在使用kerl工具构建Erlang/OTP环境时,许多开发者会遇到无法正确安装man手册页面的问题。本文将深入分析这一常见问题的原因,并提供完整的解决方案。
问题现象
当用户尝试通过kerl构建Erlang/OTP 26.2.4版本时,即使设置了KERL_INSTALL_MANPAGES=yes配置,构建过程仍会失败,并出现"make: *** No rule to make target 'chunks'. Stop."的错误提示。这导致无法通过man -man erlang命令查看Erlang相关的手册页面。
根本原因分析
经过技术分析,这个问题主要有两个关键因素:
-
构建目标配置错误:在kerl配置中,
KERL_DOC_TARGETS被设置为"man chunks",但Erlang/OTP的构建系统并不支持"chunks"这个目标。 -
依赖缺失:构建文档需要系统安装必要的依赖项,如wxWidgets等,缺少这些依赖会导致文档构建失败。
完整解决方案
1. 正确配置kerl
修改~/.kerlrc配置文件,仅保留必要的man手册构建选项:
export KERL_BUILD_DOCS=yes
export KERL_INSTALL_MANPAGES=yes
export KERL_DEFAULT_INSTALL_DIR="$HOME"/kerl
移除KERL_DOC_TARGETS配置或将其设置为仅包含"man":
export KERL_DOC_TARGETS="man"
2. 安装系统依赖
在Ubuntu/Debian系统上,需要安装以下依赖:
sudo apt-get install -y libwxgtk3.0-gtk3-dev libgl1-mesa-dev libglu1-mesa-dev
在macOS系统上,使用Homebrew安装依赖:
brew install wxwidgets
3. 重新构建Erlang
完成上述配置和依赖安装后,执行以下命令重新构建:
kerl build 26.2.4
kerl install 26.2.4 ~/kerl/26.2.4
. ~/kerl/26.2.4/activate
4. 验证man手册
构建完成后,验证man手册是否可用:
man erlang
技术背景
kerl是Erlang版本管理工具,它通过自动化下载、配置和构建过程简化了多版本Erlang环境的维护。man手册的构建是Erlang构建过程的一部分,需要正确配置和系统支持才能完成。
Erlang的文档系统使用特定的make目标来生成不同格式的文档,"man"目标负责生成Unix手册页,而"chunks"目标在某些Erlang版本中可能不被支持。
最佳实践建议
- 在构建前总是检查系统依赖是否完整
- 保持kerl配置简洁,只启用确实需要的选项
- 定期更新kerl到最新版本以获得最佳兼容性
- 对于生产环境,考虑预先下载所有依赖项以确保构建一致性
通过以上步骤,开发者可以成功构建包含完整man手册的Erlang环境,方便日常开发和问题排查。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00