Drizzle-ORM 中 BigInt 序列化问题的分析与解决方案
问题背景
在使用 Drizzle-ORM 与 Fastify/NestJS 构建应用时,开发者可能会遇到一个常见的错误:"TypeError: Do not know how to serialize a BigInt"。这个问题通常出现在处理 PostgreSQL 数据库中的 bigserial 或 bigint 类型字段时。
问题根源
这个问题的本质在于 JavaScript 的 JSON.stringify() 方法无法直接序列化 BigInt 类型。当 Drizzle-ORM 从数据库查询返回包含 BigInt 类型的数据,而应用框架(如 Fastify 或 Express)尝试将这些数据序列化为 JSON 响应时,就会抛出上述错误。
Drizzle-ORM 的默认行为
Drizzle-ORM 在处理 bigserial 和 bigint 类型时有一些值得注意的行为差异:
- 对于 bigserial 类型,Drizzle-Kit 默认生成 {mode: 'bigint'} 的配置
- 对于普通 bigint 类型(特别是外键字段),Drizzle-Kit 会默认生成 {mode: 'number'} 的配置,并附带注释说明可以使用 bigint 模式来处理超出 JavaScript 数字限制的情况
解决方案
方案一:修改模式为 number
最直接的解决方案是在定义 bigserial 字段时显式指定 mode 为 number:
id: bigserial('id', {mode: 'number'}).primaryKey().notNull()
这种方案简单有效,但需要注意可能丢失精度的问题,因为 JavaScript 的 number 类型只能安全表示 ±(2^53-1) 范围内的整数。
方案二:自定义序列化逻辑
对于需要处理超大整数的场景,可以保留 bigint 模式,但需要实现自定义的序列化逻辑。常见方法包括:
- 在应用层添加 BigInt 的序列化支持
- 使用中间件转换 BigInt 为字符串
- 在 DTO 转换时处理 BigInt 字段
方案三:统一模式配置
为了保持一致性,建议在项目中统一 bigserial 和 bigint 的模式配置。如果大部分场景不需要处理超大整数,可以全局使用 number 模式;否则,统一使用 bigint 模式并实现相应的序列化支持。
最佳实践建议
- 对于主键 ID 等通常不会达到超大值的字段,优先使用 number 模式
- 在项目早期明确是否需要处理超大整数,统一配置模式
- 在 API 文档中明确说明可能存在的整数精度限制
- 考虑在数据库模型定义中添加注释说明模式选择的原因
总结
Drizzle-ORM 的 BigInt 序列化问题是一个典型的 JavaScript 类型系统与数据库类型系统之间的阻抗匹配问题。通过理解问题本质和 Drizzle-ORM 的行为模式,开发者可以做出合理的架构决策,平衡开发便利性和功能完整性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0118
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00