TRL项目中的SFT训练器数据整理器优化探讨
2025-05-17 11:19:17作者:胡唯隽
在自然语言处理领域,监督式微调(SFT)是提升预训练语言模型性能的关键技术。近期TRL项目社区针对其SFTTrainer默认数据整理器的选择展开了深入讨论,这反映了开发者对训练细节的持续优化追求。
传统上,TRL的SFTTrainer默认采用DataCollatorForLanguageModeling作为数据整理器。这种设计存在一个潜在问题:标准的语言建模训练会同时计算提示词(prompt)和补全内容(completion)的损失,而典型的SFT训练往往只需要优化补全部分的表现。
技术讨论中提出了两个重要观点:
- 工程实践角度:大多数开发者默认将SFT等同于"忽略提示词损失"的训练方式,现有设计可能造成理解偏差
- 学术研究角度:近期多篇论文对是否应该忽略提示词损失存在争议,表明这个问题尚未有定论
值得注意的是,这个问题不仅关乎API设计的直观性,更涉及模型训练的核心机制。当保留提示词损失时,模型可能会过度优化与任务无关的部分;而完全忽略提示词损失,在某些情况下又可能影响模型对指令的理解能力。
TRL团队最终通过代码合并采纳了这个优化建议,将默认数据整理器调整为DataCollatorForCompletionOnlyLM。这个变更体现了开源项目响应社区反馈的敏捷性,同时也保持了框架的灵活性——开发者仍可通过参数配置选择其他数据整理策略。
对于实践者而言,这个改进意味着:
- 更符合直觉的默认行为,降低误用风险
- 保持了对高级训练场景的支持
- 反映了当前社区的最佳实践共识
这个案例很好地展示了开源项目如何通过社区互动持续优化设计,也提醒开发者在进行模型微调时需要明确理解底层训练机制的选择及其影响。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355