parkervcp/eggs项目:Palworld服务端在ARM64架构下的兼容性问题分析
背景概述
在游戏服务器部署领域,parkervcp/eggs项目提供了多种游戏服务端的自动化部署方案。近期有用户反馈在Oracle Cloud的ARM64架构实例上部署Palworld游戏服务端时遇到了安装失败的问题。
技术分析
Palworld作为一款基于Steam平台的游戏,其服务端部署存在特定的架构要求。经过技术验证,可以确认:
-
架构限制:Palworld服务端与大多数Steam平台游戏一样,目前仅支持x86_64架构,无法在ARM64架构处理器上正常运行。
-
错误表现:当用户在ARM64架构的服务器(如Oracle Cloud提供的aarch64实例)上尝试安装时,安装过程会失败,控制台会显示相关错误信息。
-
根本原因:这是由于二进制兼容性问题导致的。Steam平台游戏的服务端通常编译为x86_64架构的二进制文件,无法在ARM处理器上直接执行。
解决方案
对于希望在云服务器上部署Palworld服务端的用户,建议采取以下方案:
-
更换服务器架构:选择提供x86_64架构实例的云服务商,如AWS、Google Cloud或Azure的标准实例。
-
使用兼容层:虽然理论上可以通过QEMU等模拟器在ARM64上运行x86程序,但这种方案会带来显著的性能损失,不推荐用于生产环境。
-
等待官方支持:关注游戏开发商是否会在未来提供ARM64架构的原生支持。
最佳实践建议
-
在部署游戏服务器前,务必确认游戏服务端对处理器架构的要求。
-
对于Steam平台的游戏服务端,默认应假设其仅支持x86_64架构,除非明确说明支持ARM。
-
云服务选择时,注意区分实例的处理器架构类型,避免因架构不匹配导致部署失败。
总结
Palworld作为一款新兴的Steam平台游戏,其服务端目前尚不支持ARM64架构。用户在部署时应当选择兼容的x86_64架构服务器,以确保服务能够正常安装和运行。随着ARM服务器生态的发展,未来可能会有更多游戏服务端提供多架构支持,但目前阶段仍需遵循现有的架构兼容性要求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00