MTEB基准测试中数据集缺失问题的分析与解决方案
2025-07-01 18:00:36作者:姚月梅Lane
在开源项目embeddings-benchmark/mteb(大规模文本嵌入基准测试)的开发过程中,开发团队发现了一个重要问题:用于评估的关键数据集navjordj/SNL_summarization突然不可用。这个数据集原本被包含在Scandinavian和Multilingual两个版本的基准测试中,涉及三个重要任务:SNLRetrieval、SNLHierarchicalClusteringS2S和SNLHierarchicalClusteringP2P。
问题背景与影响
数据集缺失对基准测试的完整性造成了显著影响。在自然语言处理领域,基准测试的可重复性和稳定性至关重要。当关键数据集突然不可用时,不仅会影响当前的研究工作,还会对历史结果的比较造成困难。特别是SNLHierarchicalClusteringP2P任务同时存在于Scandinavian和Multilingual两个版本的基准测试中,这使得问题的影响范围进一步扩大。
技术团队的响应与讨论
开发团队迅速对此问题做出了响应。主要贡献者KennethEnevoldsen首先联系了数据集的原作者,但未能获得回复。随后,团队内部展开了深入讨论,探讨了多种解决方案:
- 短期解决方案:寻找是否有其他团队成员缓存了该数据集
- 中期措施:考虑从基准测试中移除相关任务
- 长期机制:建立更可靠的数据集托管方案
经验教训与最佳实践
这一事件促使团队反思并制定了新的最佳实践:
- 数据集托管策略:所有用于基准测试的数据集应当托管在项目组织(mteb)下,而非个人账户中
- 版本控制机制:当基准测试组成发生变化时,应当进行版本升级(如从v1升级到v2)
- 变更记录:对基准测试的变更应当有明确的记录和说明
问题的最终解决
在社区成员adrlau的帮助下,团队获得了数据集的缓存副本,并将其重新上传至新的存储位置。这一解决方案不仅解决了眼前的问题,也为未来可能出现的类似情况提供了参考案例。
对NLP社区的启示
这一事件对整个NLP社区都有重要启示意义。在构建基准测试时,数据集的长期可用性是需要重点考虑的因素。研究团队应当:
- 选择稳定的数据托管方案
- 建立数据备份机制
- 制定明确的数据集维护计划
- 考虑数据集替代方案的设计
通过这次事件,MTEB项目团队不仅解决了一个具体的技术问题,更重要的是建立起了更健壮的项目管理机制,这将有助于提升未来基准测试的可靠性和可持续性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44