【亲测免费】 Make Your Own Neural Network 开源项目教程
2026-01-21 04:12:16作者:袁立春Spencer
1. 项目介绍
Make Your Own Neural Network 是一个开源项目,旨在帮助初学者通过实际编写代码来学习和理解神经网络。该项目由 Tariq Rashid 创建,包含了用于学习和实验神经网络的核心代码,并提供了相关的教程和示例。
2. 项目快速启动
安装依赖
pip install numpy matplotlib
运行示例代码
from neural_network import NeuralNetwork
# 创建网络
network = NeuralNetwork(input_nodes=784, hidden_nodes=200, output_nodes=10)
# 加载训练数据
with open('mnist_train.csv', 'r') as f:
train_data_list = f.readlines()
# 训练网络
for epoch in range(10):
for record in train_data_list:
all_values = record.split(',')
inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
targets = numpy.zeros(output_nodes) + 0.01
targets[int(all_values[0])] = 0.99
network.train(inputs, targets)
# 测试网络
with open('mnist_test.csv', 'r') as f:
test_data_list = f.readlines()
scorecard = []
for record in test_data_list:
all_values = record.split(',')
correct_label = int(all_values[0])
inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
outputs = network.query(inputs)
label = numpy.argmax(outputs)
if label == correct_label:
scorecard.append(1)
else:
scorecard.append(0)
print(scorecard.count(1) / len(scorecard))
3. 应用案例和最佳实践
- 图像识别: 使用 Make Your Own Neural Network 进行手写数字识别,例如 MNIST 数据集。
- 声音识别: 将神经网络应用于音频数据,例如识别特定声音或音乐片段。
- 自然语言处理: 使用神经网络处理文本数据,例如情感分析或文本生成。
4. 典型生态项目
- PyTorch: 使用 PyTorch 实现神经网络,并利用其强大的功能和丰富的生态系统。
- TensorFlow: 使用 TensorFlow 实现神经网络,并利用其易用性和灵活性。
- Keras: 使用 Keras 作为高级接口,简化神经网络的设计和训练过程。
希望这份教程能够帮助您更好地了解和使用 Make Your Own Neural Network 开源项目。如果您有任何问题或建议,请随时联系我。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355