探索Twitter数据的利器:Twecoll
1、项目介绍
Twecoll 是一个强大的Python命令行工具,专为从Twitter获取数据和清理喜欢的推文而设计。基于子命令原则,通过指定关键字来执行不同操作,让数据管理变得更加简单。请注意,该项目不再维护,但如果你想尝试类似功能,可以查看nucoll。
2、项目技术分析
Twecoll利用了Twitter的REST API v1.1,并支持oauth进行身份验证。它创建了一系列文件和目录来存储收集的数据,包括朋友的朋友信息、头像图片、账户详情、推文、喜欢和边列表等。为了运行Twecoll,你需要Python 2.7以及argparse库,可选地,你可以安装igraph库以生成网络的聚类图。
3、项目及技术应用场景
-
下载并清除喜欢的推文:Twecoll能导出所有喜欢的推文,方便搜索。通过
twecoll likes
命令,你能保存这些信息到文件中。然后,使用-p
选项可以删除Twitter上的这些喜欢记录。 -
下载推文:无论是特定用户的推文还是搜索结果,
twecoll tweets
命令都能帮你抓取最多3000条推文。 -
生成关系图:通过
twecoll init
和fetch
命令,你可以生成GML文件以描绘一、二度人脉关系。配合igraph,你可以可视化这些复杂的关系网。
4、项目特点
-
易于使用:提供内置帮助和版本信息,每种命令都有详细的说明。
-
灵活的数据处理:不仅可以处理个人账户数据,还能对多账户进行批量操作,同时支持查询和下载推文。
-
数据安全:仅在用户同意Read+Write权限时,才会清空喜欢的推文,确保用户数据的安全。
-
图形化展示:生成的GML文件可以被多种工具(如Gephi)解析,用于进一步的数据探索和可视化。
如果你热衷于研究Twitter数据或想要管理你的社交媒体足迹,那么Twecoll无疑是一个值得尝试的工具。尽管它已不再更新,但仍能在许多场景下发挥其独特价值。现在就把它添加到你的开发工具箱,挖掘Twitter世界的无限可能吧!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









