探索Twitter数据的利器:Twecoll
1、项目介绍
Twecoll 是一个强大的Python命令行工具,专为从Twitter获取数据和清理喜欢的推文而设计。基于子命令原则,通过指定关键字来执行不同操作,让数据管理变得更加简单。请注意,该项目不再维护,但如果你想尝试类似功能,可以查看nucoll。
2、项目技术分析
Twecoll利用了Twitter的REST API v1.1,并支持oauth进行身份验证。它创建了一系列文件和目录来存储收集的数据,包括朋友的朋友信息、头像图片、账户详情、推文、喜欢和边列表等。为了运行Twecoll,你需要Python 2.7以及argparse库,可选地,你可以安装igraph库以生成网络的聚类图。
3、项目及技术应用场景
-
下载并清除喜欢的推文:Twecoll能导出所有喜欢的推文,方便搜索。通过
twecoll likes
命令,你能保存这些信息到文件中。然后,使用-p
选项可以删除Twitter上的这些喜欢记录。 -
下载推文:无论是特定用户的推文还是搜索结果,
twecoll tweets
命令都能帮你抓取最多3000条推文。 -
生成关系图:通过
twecoll init
和fetch
命令,你可以生成GML文件以描绘一、二度人脉关系。配合igraph,你可以可视化这些复杂的关系网。
4、项目特点
-
易于使用:提供内置帮助和版本信息,每种命令都有详细的说明。
-
灵活的数据处理:不仅可以处理个人账户数据,还能对多账户进行批量操作,同时支持查询和下载推文。
-
数据安全:仅在用户同意Read+Write权限时,才会清空喜欢的推文,确保用户数据的安全。
-
图形化展示:生成的GML文件可以被多种工具(如Gephi)解析,用于进一步的数据探索和可视化。
如果你热衷于研究Twitter数据或想要管理你的社交媒体足迹,那么Twecoll无疑是一个值得尝试的工具。尽管它已不再更新,但仍能在许多场景下发挥其独特价值。现在就把它添加到你的开发工具箱,挖掘Twitter世界的无限可能吧!
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









