AWS Amplify JS 中使用 PostgreSQL 自动生成类型时 list() 命令返回空数组问题解析
问题背景
在使用 AWS Amplify JS 的 Gen 2 版本时,开发者可能会遇到一个特殊的数据查询问题:当通过 npx ampx generate schema-from-database
命令从 PostgreSQL 数据库自动生成数据模型后,对于使用字符串类型作为标识符(identifier)的模型,list()
方法会返回空数组,而使用整数类型作为标识符的模型则能正常返回数据。
技术细节分析
自动生成的模型结构差异
从 PostgreSQL 数据库自动生成的模型有两种典型结构:
- 字符串类型标识符模型
"auth": a.model({
user_id: a.string().required(),
username: a.string().required(),
password: a.string().required(),
access: a.boolean(),
created: a.datetime(),
updated: a.datetime()
}).identifier(["user_id"])
- 整数类型标识符模型
"one_off": a.model({
id: a.integer().required(),
token: a.string(),
amount: a.integer(),
used: a.integer(),
expiry_date: a.datetime(),
created: a.datetime(),
updated: a.datetime()
}).identifier(["id"])
GraphQL 查询差异
这两种模型生成的 GraphQL 查询语句存在关键差异:
字符串标识符模型查询
query ($user_id: String, $sortDirection: ModelSortDirection, $filter: ModelAuthFilterInput, $limit: Int, $nextToken: String) {
listAuths(
user_id: $user_id
sortDirection: $sortDirection
filter: $filter
limit: $limit
nextToken: $nextToken
) {
items {
user_id
username
password
access
created
updated
}
nextToken
__typename
}
}
整数标识符模型查询
query ($filter: ModelOne_offFilterInput, $limit: Int, $nextToken: String) {
listOne_offs(filter: $filter, limit: $limit, nextToken: $nextToken) {
items {
id
token
amount
used
expiry_date
created
updated
}
nextToken
__typename
}
}
关键区别在于字符串标识符模型会将标识符字段(如 user_id
)作为查询参数,而整数标识符模型则不会。当 user_id
参数未提供时,查询可能无法返回预期结果。
解决方案
经过 AWS Amplify 团队的验证,最新版本的 @aws-amplify/backend
和 @aws-amplify/backend-cli
已经解决了这个问题。开发者可以采取以下步骤:
- 更新相关依赖包:
npm i @aws-amplify/backend @aws-amplify/backend-cli
- 更新数据模式包:
npm update @aws-amplify/data-schema
验证结果
在最新版本中,即使是使用字符串类型作为标识符的模型,list()
方法也能正常返回数据。例如:
const { data } = await client.models.posts.list();
console.log(data); // 正常返回所有帖子数据
对应的 GraphQL 查询也不再包含标识符字段作为查询参数,确保了查询的完整性和一致性。
总结
这个问题主要出现在特定版本的 AWS Amplify JS 中,特别是在处理 PostgreSQL 数据库自动生成的模型时。通过更新到最新版本,开发者可以避免这种不一致的行为,确保无论使用何种类型的标识符,list()
方法都能按预期工作。
对于使用 AWS Amplify JS 连接现有数据库的开发人员,建议定期检查并更新相关依赖包,以获得最佳兼容性和稳定性。同时,在定义数据库模型时,了解不同类型标识符的处理方式也有助于更好地设计数据结构和查询逻辑。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









