Intel Extension for PyTorch中加载XPU模型继续训练的问题解析
2025-07-07 23:45:59作者:昌雅子Ethen
在Intel Extension for PyTorch项目中,当用户尝试加载一个在XPU设备上训练过的模型并继续训练时,可能会遇到设备不匹配的错误。本文将深入分析这一问题的原因,并提供完整的解决方案。
问题现象
用户在尝试加载已保存的模型检查点(checkpoint)并继续训练时,系统报错"Expected all tensors to be on the same device, but found at least two devices, xpu:0 and cpu!"。这表明在训练过程中,系统检测到部分张量位于XPU设备上,而另一些则位于CPU上,导致设备不匹配。
根本原因分析
经过深入分析,问题主要出在优化器状态恢复的顺序上。具体原因如下:
- 用户代码中先加载了优化器状态字典(optimizer_state_dict),然后将模型移动到XPU设备
- 优化器状态中的参数设备信息与移动后的模型参数设备不一致
- 当执行优化器步骤(optimizer.step())时,系统检测到设备不匹配
完整解决方案
正确的做法应该是:
- 先加载模型参数
- 将模型移动到目标设备(XPU)
- 最后加载优化器状态
以下是修正后的代码示例:
# 加载模型参数
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
# 将模型移动到XPU设备
model = model.to("xpu")
criterion = criterion.to("xpu")
# 现在加载优化器状态
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# 优化模型和优化器
model, optimizer = ipex.optimize(model, optimizer=optimizer)
技术原理详解
这种设备不匹配问题的本质在于PyTorch如何处理设备转移和状态恢复:
- 当模型被移动到新设备时,所有参数都会转移到目标设备
- 优化器状态字典中保存的参数引用仍然指向原始设备(CPU)
- Intel Extension for PyTorch的优化器实现会严格检查所有张量是否位于同一设备
通过调整加载顺序,我们确保了:
- 模型参数已位于XPU设备
- 优化器状态加载时能正确关联到XPU设备上的参数
- 后续训练过程中所有计算都在同一设备上执行
验证方法
为了确认训练确实从检查点恢复,可以:
- 记录初始训练损失值
- 在特定批次保存检查点
- 重新加载后检查损失值是否从检查点位置继续
正常情况下,重新加载后的初始损失值应与保存时的损失值相近,表明训练状态已正确恢复。
最佳实践建议
- 始终在模型转移到目标设备后再加载优化器状态
- 定期保存检查点时记录当前的训练指标(如损失值、准确率等)
- 恢复训练时先验证初始指标是否符合预期
- 对于大型模型,考虑使用混合精度训练以节省显存
通过遵循这些实践,可以确保在Intel XPU设备上高效、稳定地进行模型训练和恢复。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143