LLaVA项目自定义数据微调与评估实践指南
2025-05-09 17:49:15作者:劳婵绚Shirley
概述
LLaVA作为当前热门的视觉语言大模型,在实际应用中经常需要进行自定义数据的微调和评估。本文将详细介绍LLaVA模型在自定义数据上的完整工作流程,包括数据准备、模型微调、权重合并以及评估方法。
数据准备阶段
在LLaVA项目中,评估数据需要采用特定的JSONL格式。每条数据记录应包含以下关键字段:
image
: 指定图像文件名或路径text
: 包含待评估的问题文本category
: 问题类别标识question_id
: 唯一的问题ID
示例格式如下:
{"image": "sample_image.jpg", "text": "这张图片中有什么物体?", "category": "object", "question_id": 1}
模型微调流程
LoRA微调配置
LLaVA支持使用LoRA技术进行高效微调。典型的微调脚本配置包括:
- 启用LoRA并设置相关参数(r=128, alpha=256)
- 指定基础模型路径(如vicuna-7b-v1.5)
- 配置训练数据路径和图像文件夹
- 设置训练超参数(学习率、batch size等)
- 定义输出目录保存微调结果
微调后权重合并
完成LoRA微调后,需要使用专用脚本合并权重:
python scripts/merge_lora_weights.py \
--model-path /path/to/lora/finetuned/model \
--model-base lmsys/vicuna-7b-v1.5 \
--save-model-path /path/to/save/merged/model
这一步骤将LoRA适配器权重与基础模型合并,生成可直接用于推理的完整模型。
模型评估方法
评估脚本使用
LLaVA提供了专门的评估脚本,主要功能包括:
- 加载微调后的模型
- 处理输入图像和问题
- 生成模型回答
- 输出评估结果
典型评估命令示例:
python llava/eval/model_vqa.py \
--model-path /path/to/merged/model \
--question-file questions.jsonl \
--image-folder /path/to/images \
--answers-file answers.jsonl
常见问题解决
在评估过程中可能会遇到"probability tensor contains inf/nan"错误,这通常是由于:
- 模型权重未正确合并
- 基础模型路径配置错误
- 评估脚本参数设置不当
解决方案包括:
- 确认模型合并过程完整无误
- 检查基础模型与微调模型的版本匹配
- 验证评估脚本的参数设置
实际应用建议
- 数据质量:确保评估数据覆盖实际应用场景,包含多样化的图像和问题类型
- 评估指标:除了自动评估,建议加入人工评估环节
- 迭代优化:根据评估结果持续优化模型和数据集
- 资源管理:7B模型适合资源有限的情况,有条件可使用更大模型
通过本文介绍的完整流程,开发者可以有效地在LLaVA模型上进行自定义数据微调和评估,为实际应用场景打造更精准的视觉语言模型。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K