LLaVA项目自定义数据微调与评估实践指南
2025-05-09 16:15:47作者:劳婵绚Shirley
概述
LLaVA作为当前热门的视觉语言大模型,在实际应用中经常需要进行自定义数据的微调和评估。本文将详细介绍LLaVA模型在自定义数据上的完整工作流程,包括数据准备、模型微调、权重合并以及评估方法。
数据准备阶段
在LLaVA项目中,评估数据需要采用特定的JSONL格式。每条数据记录应包含以下关键字段:
image
: 指定图像文件名或路径text
: 包含待评估的问题文本category
: 问题类别标识question_id
: 唯一的问题ID
示例格式如下:
{"image": "sample_image.jpg", "text": "这张图片中有什么物体?", "category": "object", "question_id": 1}
模型微调流程
LoRA微调配置
LLaVA支持使用LoRA技术进行高效微调。典型的微调脚本配置包括:
- 启用LoRA并设置相关参数(r=128, alpha=256)
- 指定基础模型路径(如vicuna-7b-v1.5)
- 配置训练数据路径和图像文件夹
- 设置训练超参数(学习率、batch size等)
- 定义输出目录保存微调结果
微调后权重合并
完成LoRA微调后,需要使用专用脚本合并权重:
python scripts/merge_lora_weights.py \
--model-path /path/to/lora/finetuned/model \
--model-base lmsys/vicuna-7b-v1.5 \
--save-model-path /path/to/save/merged/model
这一步骤将LoRA适配器权重与基础模型合并,生成可直接用于推理的完整模型。
模型评估方法
评估脚本使用
LLaVA提供了专门的评估脚本,主要功能包括:
- 加载微调后的模型
- 处理输入图像和问题
- 生成模型回答
- 输出评估结果
典型评估命令示例:
python llava/eval/model_vqa.py \
--model-path /path/to/merged/model \
--question-file questions.jsonl \
--image-folder /path/to/images \
--answers-file answers.jsonl
常见问题解决
在评估过程中可能会遇到"probability tensor contains inf/nan"错误,这通常是由于:
- 模型权重未正确合并
- 基础模型路径配置错误
- 评估脚本参数设置不当
解决方案包括:
- 确认模型合并过程完整无误
- 检查基础模型与微调模型的版本匹配
- 验证评估脚本的参数设置
实际应用建议
- 数据质量:确保评估数据覆盖实际应用场景,包含多样化的图像和问题类型
- 评估指标:除了自动评估,建议加入人工评估环节
- 迭代优化:根据评估结果持续优化模型和数据集
- 资源管理:7B模型适合资源有限的情况,有条件可使用更大模型
通过本文介绍的完整流程,开发者可以有效地在LLaVA模型上进行自定义数据微调和评估,为实际应用场景打造更精准的视觉语言模型。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193