TFHE-rs项目v1.1.0版本发布:CPU与GPU后端全面升级
TFHE-rs是一个基于Rust语言实现的完全同态加密(FHE)库,它允许在加密数据上直接进行计算而无需解密。该项目由Zama团队开发,旨在为开发者提供高效、安全的同态加密解决方案。近日,TFHE-rs发布了1.1.0版本,带来了多项重要更新和改进,特别是在CPU和GPU后端的性能优化和功能扩展方面。
CPU后端的新特性与改进
在CPU后端方面,TFHE-rs 1.1.0版本引入了多项实用的新功能:
-
标量运算增强:新增了标量作为左操作数的减法运算,以及标量版本的CMUX/Select操作,这使得条件选择操作更加灵活。开发者现在可以在整数和高层API中使用这些操作,大大简化了某些特定场景下的编程模型。
-
布尔向量点积:新增了对FheBool向量点积运算的支持,这一特性在处理某些机器学习算法或逻辑运算密集型应用时特别有用。
-
字符串类型支持:现在支持对字符串类型进行简单的加密/解密操作,扩展了库的应用场景。
-
内存优化:引入了分块的LweBootstrapKey和SeededLweBootstrapKey生成机制,这对于内存受限的系统特别有价值,可以更有效地管理内存使用。
-
噪声管理API:新增了噪声压制(noise squashing)API,为需要噪声淹没(noise flooding)的应用场景提供了更好的支持。这一特性对于需要更高安全级别的应用尤为重要。
-
静态类型增强:通过新增的extended-types特性,高层API现在支持更多的静态类型检查,有助于在编译期捕获更多错误。
在性能优化方面,该版本对Solinas素数2⁶⁴-2³²+1的NTT(数论变换)实现进行了重大改进,现在使用特殊的旋转因子(twiddle factors)使得可以用位运算替代昂贵的乘法操作,显著提升了计算效率。
GPU后端的重大升级
GPU后端在这个版本中获得了显著的增强:
-
128位可编程自举(PBS):实现了128位的经典PBS操作,这是同态加密中的核心操作之一。这一升级使得GPU后端能够处理更高精度的计算。
-
密码参数标准化:更新了GPU的密码学参数,使其与CPU标准保持一致,现在两者都提供了2⁻¹²⁸的操作失败概率,达到了更高的安全标准。
-
精度改进:在64位FFT实现中,现在使用十六进制初始化旋转因子以获得更好的精度。
-
性能优化:重构了double2运算符以使用CUDA内部函数,确保与CPU浮点运算的一致性;改进了整数和ERC20吞吐量基准测试,以更好地反映多GPU性能。
重要变更说明
开发者需要注意以下两个重要的破坏性变更:
-
整数块旋转和块移位原语的方向反转:为了修正其语义含义,这些操作的方向现在被反转。使用这些功能的代码需要进行相应调整。
-
NTT旋转因子变更:针对素数2⁶⁴-2³²+1的NTT现在使用新的旋转因子,旧版本的NTT密钥将不再兼容。这一变更是为了支持更高效的位运算实现。
总结
TFHE-rs 1.1.0版本在功能和性能上都有显著提升,特别是在GPU后端的支持上迈出了重要一步。新引入的标量操作、布尔向量点积和噪声管理API等特性,使得这个同态加密库更加实用和强大。对于需要高性能同态加密解决方案的开发者来说,这个版本值得关注和升级。
随着同态加密技术在隐私保护计算领域的应用日益广泛,TFHE-rs这样的开源项目正在降低这一技术的使用门槛,为开发者提供更多可能性。1.1.0版本的发布标志着该项目在成熟度和功能性上又向前迈进了一步。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00