PHPStan 中 C 扩展提供的属性类识别问题解析
问题背景
在 PHP 静态分析工具 PHPStan 的使用过程中,发现一个关于 C 扩展提供的属性类的识别问题。当开发者使用由 C 扩展提供的 PHP 属性类时,PHPStan 无法正确识别这些类作为有效的属性类,会报出"Class is not an Attribute class"的错误。
技术细节分析
这个问题源于 PHPStan 内部反射机制的工作方式。PHPStan 使用 BetterReflection 库而非 PHP 原生反射来获取类信息。在检查一个类是否为属性类时,PHPStan 会调用 getAttributes(Attribute::class) 方法,但对于 C 扩展提供的类,这个方法返回了空数组,而实际上这些类确实被标记为属性类。
深入分析发现,PHP 原生反射能够正确识别这些 C 扩展提供的属性类,返回正确的目标类型和参数信息。这表明问题出在 PHPStan 的反射层实现上,而不是扩展本身的实现问题。
解决方案
PHPStan 核心开发者通过修改 BetterReflection 库中的 ReflectionSourceStubber 实现解决了这个问题。关键修改是确保对于 C 扩展提供的类,也能正确识别其属性特性。这个修复已经合并到 PHPStan 的 1.12.x 和 2.0.x 版本分支中。
开发者应对方案
对于遇到类似问题的开发者,可以采取以下措施:
- 确保使用最新版本的 PHPStan,特别是 1.12.x 或 2.0.x 版本
- 如果暂时无法升级,可以考虑使用 stub 文件来提供类定义
- 对于自定义扩展开发,确保正确实现了属性类的反射信息
技术启示
这个案例展示了静态分析工具在处理不同来源的 PHP 类时可能遇到的挑战。特别是对于 C 扩展提供的类,由于它们不是通过常规的 PHP 源代码定义的,工具需要特殊的处理逻辑。这也提醒我们在开发 PHP 扩展时,需要考虑与静态分析工具的兼容性。
总结
PHPStan 已经解决了 C 扩展属性类的识别问题,开发者只需升级到最新版本即可。这个问题的解决也体现了 PHP 静态分析工具的不断完善,能够更好地支持各种 PHP 生态中的特殊用例。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01