Quix Streams 3.15.0版本发布:流式数据处理的重大升级
Quix Streams是一个专注于实时数据处理的Python库,它构建在Apache Kafka之上,为开发者提供了简单易用的API来处理流式数据。该项目的核心目标是让开发者能够像处理批处理数据一样轻松地处理流数据,同时保持高性能和低延迟。
流式数据连接新特性:StreamingDataFrame.join_asof
在3.15.0版本中,Quix Streams引入了一个强大的新功能——StreamingDataFrame.join_asof()方法。这个功能专为时间序列数据场景设计,允许开发者将两个主题(topic)中的数据流进行智能连接。
工作原理
join_asof操作会将左侧数据流中的每条记录与右侧数据流中具有相同键(key)且时间戳小于或等于左侧记录时间戳的最新记录进行合并。这种连接方式特别适合以下场景:
- 传感器测量数据与系统事件的匹配
- 商品购买记录与当时有效价格的关联
- 任何需要将实时测量数据与元数据或配置信息关联的场景
使用示例
from datetime import timedelta
from quixstreams import Application
app = Application(...)
sdf_measurements = app.dataframe(app.topic("measurements"))
sdf_metadata = app.dataframe(app.topic("metadata"))
sdf_joined = sdf_measurements.join_asof(
right=sdf_metadata,
how="inner", # 只保留能找到匹配的记录
on_merge="keep-left", # 列名冲突时保留左侧数据
grace_ms=timedelta(days=14), # 状态保留14天(基于事件时间)
)
if __name__ == '__main__':
app.run()
这个功能极大地简化了时间序列数据处理中的常见模式,开发者不再需要手动实现复杂的匹配逻辑。
状态存储改进
3.15.0版本对状态存储系统进行了多项重要改进:
-
默认启用fsync:现在RocksDB默认会启用fsync操作,确保数据更可靠地写入磁盘,减少数据丢失的风险。
-
写入日志增强:RocksDBStorePartition现在会记录写入的字节数,帮助开发者更好地监控和优化应用性能。
-
状态操作优化:对状态操作进行了性能优化,提升了整体处理效率。
-
损坏数据库自动恢复:新增了一个参数,允许在检测到RocksDB状态存储损坏时自动重新创建数据库。开发者可以通过以下方式启用这一功能:
from quixstreams import Application
from quixstreams.state.rocksdb import RocksDBOptions
app = Application(..., rocksdb_options=RocksDBOptions(on_corrupted_recreate=True))
技术价值与应用场景
Quix Streams 3.15.0版本的这些改进特别适合以下应用场景:
-
物联网数据处理:传感器数据与设备元数据的实时关联变得更加简单可靠。
-
金融交易系统:可以轻松实现交易记录与当时市场条件的匹配。
-
实时监控系统:测量数据与系统状态变化的关联分析。
-
电子商务平台:订单与商品价格历史记录的关联分析。
join_asof功能的引入填补了流处理领域的一个重要空白,使得时间序列数据的处理模式更加完整。而状态存储的改进则提升了系统的可靠性和可观测性,让开发者能够构建更加健壮的流处理应用。
总结
Quix Streams 3.15.0版本通过引入join_asof操作和多项状态存储改进,进一步巩固了其作为流处理领域重要工具的地位。这些新特性不仅扩展了库的功能范围,还提升了处理复杂实时数据场景的能力和可靠性。对于需要处理时间序列数据或构建实时分析系统的开发者来说,这个版本提供了更加强大和易用的工具集。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00