LangChain项目中OpenAI流式调用时的令牌计数问题解析
背景介绍
在使用LangChain框架与OpenAI API交互时,开发者经常需要跟踪API调用的令牌使用情况,以便进行成本控制和性能优化。LangChain提供了get_openai_callback
工具来方便地统计令牌消耗,但在流式调用场景下,这一功能存在一些特殊注意事项。
问题现象
当开发者使用AzureChatOpenAI进行流式调用时,发现get_openai_callback
返回的令牌计数始终为零。例如以下代码:
from langchain_community.callbacks.manager import get_openai_callback
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(model=model, temperature=0)
with get_openai_callback() as cb:
for chunk in llm.stream("Tell me a joke"):
print(chunk.content, end="")
print("\n")
print(cb)
输出结果显示所有令牌计数均为零,这与预期不符。
技术原理
这个问题的根源在于OpenAI API的流式响应机制。默认情况下,流式响应不包含令牌使用信息,这是出于性能考虑的设计选择。OpenAI API只有在非流式调用时才会在响应中包含完整的令牌计数信息。
解决方案
针对这个问题,LangChain社区提供了两种解决方案:
-
使用stream_options参数:可以通过在模型初始化时传递
model_kwargs={"stream_options": {"include_usage": True}}
来显式要求API在流式响应中包含令牌使用信息。 -
使用stream_usage参数:在新版本的langchain-openai包中,AzureChatOpenAI直接支持了
stream_usage=True
参数,这是更简洁的解决方案。
最佳实践
对于使用LangChain与OpenAI API交互的开发者,建议:
-
始终更新到最新版本的langchain-openai包,以获得最佳功能和性能。
-
在流式调用场景下,明确指定需要令牌计数信息,无论是通过
stream_options
还是stream_usage
参数。 -
对于成本敏感的应用,建议在开发阶段充分测试令牌计数功能,确保其按预期工作。
总结
LangChain框架提供了强大的工具来简化与OpenAI API的交互,但在特定场景下需要开发者了解底层机制才能充分发挥其功能。流式调用时的令牌计数就是一个典型例子,通过正确配置参数可以轻松解决这一问题。随着LangChain生态的不断发展,这类常见问题的解决方案也会越来越简洁直观。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0368Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++094AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









