序列IQ Docker-Spark项目安装与使用指南
目录结构及介绍
当你从https://github.com/sequenceiq/docker-spark.git克隆了SequenceIQ的Docker-Spark项目之后,你会看到以下的主要目录结构:
Dockerfiles
这个目录包含了构建不同版本Apache Spark容器的基础Dockerfile。
scripts
该目录包括用于自动化Docker镜像构建以及集群部署的脚本。
examples
此目录提供了几个示例脚本来展示如何使用不同的Dockerfile来构建特定版本的Spark镜像并运行它们。
README.md
主要说明文件,描述了项目的整体架构、目标和基本操作步骤。
启动文件介绍
在scripts目录中,有几个关键的脚本帮助启动Docker容器和Spark集群:
-
docker-build.sh: 这个脚本用于构建Docker镜像。你可以通过提供相应的参数指定Spark和Hadoop版本。
-
docker-run.sh: 使用已构建的镜像启动一个或多个Docker容器作为Spark工作者节点。
-
start-master.sh: 启动Docker容器作为Spark主节点。
这些脚本可以独立执行以准备或测试单个组件,也可以结合使用以创建完整的Spark集群环境。
配置文件介绍
虽然SequenceIQ的Docker-Spark没有显式的配置文件(如.conf或.yaml),但大部分配置发生在构建过程中和启动脚本内通过环境变量传递给Docker容器。
例如,在构建阶段,可以通过设置环境变量来选择不同的Spark和Hadoop版本。在启动脚本中,则通过命令行参数调整集群大小、内存分配等具体细节。
为了自定义Spark的配置(如spark.conf中的属性),通常推荐做法是:
- 在Dockerfile中修改
COPY指令,将你的配置文件复制到镜像内部的适当位置。 - 或者在运行Docker容器时使用
--volume标志挂载本地目录至容器内的/etc/spark/conf路径。
记住,任何对默认配置的修改都需要在构建或运行容器前进行处理,确保正确反映你所需的Spark行为特性。
总体而言,SequenceIQ的Docker-Spark设计灵活,允许用户轻松定制和扩展以适应各种大数据分析场景的需求。以上信息应该足以帮你上手并开始探索这个强大的工具集。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00