序列IQ Docker-Spark项目安装与使用指南
目录结构及介绍
当你从https://github.com/sequenceiq/docker-spark.git克隆了SequenceIQ的Docker-Spark项目之后,你会看到以下的主要目录结构:
Dockerfiles
这个目录包含了构建不同版本Apache Spark容器的基础Dockerfile。
scripts
该目录包括用于自动化Docker镜像构建以及集群部署的脚本。
examples
此目录提供了几个示例脚本来展示如何使用不同的Dockerfile来构建特定版本的Spark镜像并运行它们。
README.md
主要说明文件,描述了项目的整体架构、目标和基本操作步骤。
启动文件介绍
在scripts目录中,有几个关键的脚本帮助启动Docker容器和Spark集群:
-
docker-build.sh: 这个脚本用于构建Docker镜像。你可以通过提供相应的参数指定Spark和Hadoop版本。
-
docker-run.sh: 使用已构建的镜像启动一个或多个Docker容器作为Spark工作者节点。
-
start-master.sh: 启动Docker容器作为Spark主节点。
这些脚本可以独立执行以准备或测试单个组件,也可以结合使用以创建完整的Spark集群环境。
配置文件介绍
虽然SequenceIQ的Docker-Spark没有显式的配置文件(如.conf或.yaml),但大部分配置发生在构建过程中和启动脚本内通过环境变量传递给Docker容器。
例如,在构建阶段,可以通过设置环境变量来选择不同的Spark和Hadoop版本。在启动脚本中,则通过命令行参数调整集群大小、内存分配等具体细节。
为了自定义Spark的配置(如spark.conf中的属性),通常推荐做法是:
- 在Dockerfile中修改
COPY指令,将你的配置文件复制到镜像内部的适当位置。 - 或者在运行Docker容器时使用
--volume标志挂载本地目录至容器内的/etc/spark/conf路径。
记住,任何对默认配置的修改都需要在构建或运行容器前进行处理,确保正确反映你所需的Spark行为特性。
总体而言,SequenceIQ的Docker-Spark设计灵活,允许用户轻松定制和扩展以适应各种大数据分析场景的需求。以上信息应该足以帮你上手并开始探索这个强大的工具集。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00