序列IQ Docker-Spark项目安装与使用指南
目录结构及介绍
当你从https://github.com/sequenceiq/docker-spark.git
克隆了SequenceIQ的Docker-Spark项目之后,你会看到以下的主要目录结构:
Dockerfiles
这个目录包含了构建不同版本Apache Spark容器的基础Dockerfile。
scripts
该目录包括用于自动化Docker镜像构建以及集群部署的脚本。
examples
此目录提供了几个示例脚本来展示如何使用不同的Dockerfile来构建特定版本的Spark镜像并运行它们。
README.md
主要说明文件,描述了项目的整体架构、目标和基本操作步骤。
启动文件介绍
在scripts
目录中,有几个关键的脚本帮助启动Docker容器和Spark集群:
-
docker-build.sh: 这个脚本用于构建Docker镜像。你可以通过提供相应的参数指定Spark和Hadoop版本。
-
docker-run.sh: 使用已构建的镜像启动一个或多个Docker容器作为Spark工作者节点。
-
start-master.sh: 启动Docker容器作为Spark主节点。
这些脚本可以独立执行以准备或测试单个组件,也可以结合使用以创建完整的Spark集群环境。
配置文件介绍
虽然SequenceIQ的Docker-Spark没有显式的配置文件(如.conf
或.yaml
),但大部分配置发生在构建过程中和启动脚本内通过环境变量传递给Docker容器。
例如,在构建阶段,可以通过设置环境变量来选择不同的Spark和Hadoop版本。在启动脚本中,则通过命令行参数调整集群大小、内存分配等具体细节。
为了自定义Spark的配置(如spark.conf
中的属性),通常推荐做法是:
- 在Dockerfile中修改
COPY
指令,将你的配置文件复制到镜像内部的适当位置。 - 或者在运行Docker容器时使用
--volume
标志挂载本地目录至容器内的/etc/spark/conf
路径。
记住,任何对默认配置的修改都需要在构建或运行容器前进行处理,确保正确反映你所需的Spark行为特性。
总体而言,SequenceIQ的Docker-Spark设计灵活,允许用户轻松定制和扩展以适应各种大数据分析场景的需求。以上信息应该足以帮你上手并开始探索这个强大的工具集。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









