深入理解self-llm项目中ChatGLM微调输出路径问题
2025-05-15 22:23:22作者:魏献源Searcher
问题背景
在self-llm项目中使用ChatGLM模型进行微调训练时,许多开发者遇到了输出路径与预期不符的情况。根据项目文档和示例,微调后的模型参数应该保存在指定输出路径下的checkpoint-xxx文件夹中,但实际运行时却生成了不同格式的输出文件。
问题现象
开发者反馈的主要现象包括:
- 预期输出路径应为
output_dir/checkpoint-1000格式,但实际生成了类似runs/Jan27_01-06-17_autodl-container-049a448514-394ad272/的路径 - 生成的文件类型不同,出现了
events.out.tfevents等格式文件而非预期的checkpoint文件
原因分析
经过技术分析,出现这种差异的主要原因可能有以下几点:
- 训练参数配置不当:特别是
save_strategy和output_dir参数的设置会影响输出路径和文件格式 - 相对路径问题:使用相对路径可能导致无法正确生成checkpoints文件夹
- TensorBoard日志记录:
events.out.tfevents文件是TensorBoard的日志文件,表明日志记录功能被启用
解决方案
要解决这个问题,可以采取以下配置方案:
args = TrainingArguments(
output_dir="/绝对路径/output", # 必须使用绝对路径
per_device_train_batch_size=1,
gradient_accumulation_steps=8,
logging_steps=5,
num_train_epochs=1,
save_strategy='steps', # 按步数保存
save_steps=10, # 每10步保存一次
learning_rate=1e-4,
# 其他参数...
)
关键配置说明:
output_dir必须使用绝对路径,相对路径可能导致问题save_strategy设置为'steps'可以按训练步数保存checkpointsave_steps控制保存频率
模型加载方法
微调完成后,可以使用以下代码加载微调后的模型:
from peft import PeftModel
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# 加载基础模型
tokenizer = AutoTokenizer.from_pretrained("模型路径", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("模型路径", trust_remote_code=True)
# 加载微调后的LoRA权重
p_model = PeftModel.from_pretrained(model, model_id="微调输出路径/checkpoint-xxx/")
最佳实践建议
- 始终使用绝对路径指定输出目录
- 明确设置保存策略和保存步数
- 检查训练环境是否满足所有依赖项
- 对于大型模型,注意内存和显存的使用情况
- 训练前验证数据预处理流程是否正确
总结
在self-llm项目中使用ChatGLM进行微调时,输出路径和文件格式问题通常源于训练参数配置不当。通过正确设置TrainingArguments参数,特别是输出目录和保存策略,可以确保生成预期的checkpoint文件。理解这些配置项的作用对于成功进行模型微调至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
239
2.36 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
Ascend Extension for PyTorch
Python
77
110
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
55