Avo项目中的Propshaft资源预编译优化实践
背景概述
在Rails项目中从Sprockets迁移到Propshaft时,Avo gem在资源预编译阶段会产生大量不必要的SVG资源文件。这一问题在Bullet Train starter repo的迁移过程中被发现,主要表现为预编译后public/assets目录下出现了大量Avo和Heroicons的SVG文件。
问题分析
Propshaft与Sprockets在资源处理机制上存在显著差异。Propshaft会自动将所有配置路径中的资源文件复制到public/assets目录,而Sprockets则更加选择性。Avo gem中包含了大量SVG图标资源,这些资源在Propshaft环境下会被全部预编译,但实际上大部分并不需要直接暴露给应用使用。
技术解决方案
临时解决方案
开发者可以通过配置Rails的assets.excluded_paths来排除不需要预编译的资源路径:
Rails.application.config.assets.excluded_paths += [
Avo::Engine.root.join("app/assets/svgs"),
Avo::Engine.root.join("app/assets/builds"),
Avo::Engine.root.join("app/assets/config"),
Avo::Engine.root.join("app/assets/stylesheets")
]
这种方法有效但需要开发者手动配置,不是最理想的长期方案。
官方改进措施
Avo团队采取了分阶段优化策略:
-
分离Heroicons资源:创建了专门的avo-heroicons gem来管理Heroicons的SVG文件,这个gem不会将SVG路径暴露给资源管道
-
保留核心SVG资源:Avo自定义的SVG图标仍保留在主gem中,因为这些资源需要频繁维护更新
-
引擎内部配置:未来可能直接在Avo引擎中配置excluded_paths,但目前考虑到兼容性问题暂未实施
最佳实践建议
对于正在迁移到Propshaft的开发者,建议:
- 按照上述方式配置excluded_paths排除不必要的资源路径
- 使用+=操作符而非=来维护现有配置
- 关注Avo的版本更新,未来版本可能会内置优化方案
技术深度解析
Propshaft的设计理念是"显式优于隐式",它默认包含所有资源路径下的文件。这与Sprockets的"按需加载"理念不同。Avo作为功能丰富的管理面板,包含大量UI资源,这种设计差异导致了资源预编译时的显著差异。
SVG资源的管理在现代前端工程中是一个常见挑战。Avo团队选择将第三方图标库(Heroicons)与自定义图标分离的方案,既解决了资源污染问题,又保持了开发灵活性。
总结
资源管道迁移是Rails现代化过程中的常见挑战。Avo项目面临的这一特定问题展示了大型gem在适应新资源管理机制时的考量。目前开发者可以采用临时排除方案,而长期来看,Avo团队正在探索更优雅的解决方案。理解Propshaft的工作机制有助于开发者更好地管理项目资源,优化部署流程。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









