mergekit项目中TIES合并算法的权重参数实现解析
2025-06-06 20:49:53作者:温艾琴Wonderful
在模型合并领域,TIES(Taskwise Interference-Eliminating Sign Selection)是一种先进的参数合并算法,它通过消除任务向量间的干扰来提升多任务模型合并的效果。本文深入分析mergekit项目中TIES算法的实现细节,特别是权重参数对算法行为的影响机制。
TIES算法核心原理回顾
TIES算法包含三个关键步骤:
- 裁剪(Sparsify):保留每个任务向量中最显著的部分参数
- 符号选举(Sign Election):确定每个参数位置最终采用的符号方向
- 不相交合并(Disjoint Merge):对保留的参数进行平均合并
原始论文中,所有任务向量在符号选举阶段具有同等权重。mergekit项目对此进行了扩展,引入了权重参数(weight),使得不同任务向量可以对合并结果产生不同影响。
权重参数的实现机制
mergekit对TIES的实现基于Task Arithmetic框架,权重参数会影响两个关键环节:
-
符号选举阶段:在裁剪后立即对任务向量进行权重缩放,这意味着权重不仅影响最终参数的数值大小,还会影响符号方向的选择。权重较大的模型在符号选举中具有更大话语权。
-
参数平均阶段:与传统实现一致,使用加权平均而非简单平均来计算最终参数值,公式为:τₘᵖ = (1/∑wₜ)∑wₜ·τ̂ᵗᵖ
实现差异的技术考量
这种实现方式与严格遵循原论文的预期存在约3%的参数差异,主要源于:
- 权重对符号选举的影响:权重大的模型在符号争议中占据优势,即使其原始参数值较小
- 浮点运算精度:不同数据精度(float16/float32)可能导致细微差异
- 归一化处理:mergekit默认启用参数归一化,影响参数的相对比例
实际应用建议
根据实际测试,mergekit的实现方式(先缩放再选举)在多数情况下表现更优,特别是当:
- 合并模型质量差异较大时,可通过权重控制低质量模型的影响
- 需要精细调节不同任务对最终模型的贡献度时
- 处理参数规模特别大的模型时,浮点差异可忽略
对于需要严格遵循原论文的场景,可考虑调整实现顺序,先进行符号选举再进行权重缩放。mergekit的模块化设计使这类定制相对容易实现。
理解这些实现细节有助于研究人员更精准地控制模型合并过程,获得预期性能的多任务模型。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669