Hot Chocolate GraphQL平台15.1.0-p.2版本发布:增强数据查询与类型支持
Hot Chocolate是一个基于.NET平台构建的高性能GraphQL服务器框架,它提供了完整的GraphQL实现,包括类型系统、查询执行引擎、订阅功能等。该项目由ChilliCream团队维护,已经成为.NET生态中最受欢迎的GraphQL解决方案之一。
近日,Hot Chocolate发布了15.1.0-p.2预发布版本,这个版本主要带来了对LocalDate/LocalDateTime/LocalTime类型的支持,以及查询上下文的扩展方法增强。下面我们来详细解析这些新特性。
新增LocalDate/LocalDateTime/LocalTime类型支持
在Strawberry Shake(Hot Chocolate的客户端组件)中,开发团队新增了对Java 8引入的日期时间类型LocalDate、LocalDateTime和LocalTime的支持。这些类型在现代应用程序中广泛使用,因为它们比传统的DateTime类型更加精确和易于使用。
LocalDate表示不带时区的日期(如2025-02-12),LocalTime表示不带时区的时间(如14:30:00),LocalDateTime则是前两者的组合。在GraphQL中正确处理这些类型对于构建健壮的API至关重要,特别是在需要处理国际化日期时间格式的场景中。
查询上下文扩展方法增强
新版本引入了两个重要的查询上下文扩展方法:
-
Select扩展方法:允许开发者在查询上下文中直接进行数据选择操作,简化了数据投影的代码编写。这在实现GraphQL字段解析器时特别有用,可以更优雅地处理数据转换和投影。
-
Include扩展方法:提供了在查询上下文中包含相关数据的便捷方式,对于实现高效的关联数据加载非常有帮助。结合Entity Framework等ORM工具使用时,可以优化生成的SQL查询,避免N+1查询问题。
这两个扩展方法的加入使得Hot Chocolate与后端数据访问层的集成更加无缝,开发者可以更自然地编写高效的数据查询逻辑。
分页查询优化
15.1.0-p.2版本改进了分页查询的行为,现在当客户端请求totalCount字段时,系统会自动通过ToPageAsync方法获取总数。这一改进使得分页查询更加智能和高效,避免了不必要的数据统计操作。
在GraphQL中,分页是一个常见需求,特别是在处理大量数据时。Hot Chocolate提供了多种分页策略,包括基于游标的分页和基于偏移量的分页。这次的优化进一步提升了分页查询的性能和可用性。
总结
Hot Chocolate 15.1.0-p.2版本虽然是一个预发布版本,但已经带来了几个实用的改进。日期时间类型的增强支持使得API设计更加规范,查询上下文扩展方法的加入提升了开发体验,而分页查询的优化则改善了性能表现。
对于正在使用或考虑使用Hot Chocolate的.NET开发者来说,这个版本值得关注。特别是那些需要处理复杂数据查询和国际化日期时间格式的项目,这些新特性将显著提升开发效率和系统性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00