Hi-FT/ERD项目运行时配置深度定制指南
2025-06-19 06:08:51作者:邬祺芯Juliet
前言
在深度学习模型训练过程中,合理的运行时配置对模型性能有着至关重要的影响。本文将全面介绍如何在Hi-FT/ERD项目中定制化训练过程的各个关键环节,包括优化器配置、训练调度策略、训练循环以及钩子机制等。
优化器配置详解
基础优化器配置
Hi-FT/ERD项目采用optim_wrapper统一管理优化相关配置,包含三个核心部分:
- 优化器(optimizer):定义基础优化算法
- 参数级配置(paramwise_cfg):支持对不同参数组设置差异化策略
- 梯度裁剪(clip_grad):防止梯度爆炸的稳定措施
# 典型配置示例
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='AdamW', # 使用AdamW优化器
lr=0.0001, # 基础学习率
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999)),
# 参数级学习率和权重衰减设置
paramwise_cfg=dict(
custom_keys={
'backbone': dict(lr_mult=0.1), # 骨干网络学习率降为1/10
},
norm_decay_mult=0.0), # 归一化层权重衰减系数
# 梯度裁剪配置
clip_grad=dict(max_norm=0.01, norm_type=2))
使用PyTorch内置优化器
项目支持所有PyTorch原生优化器,只需简单修改配置即可切换:
# 使用ADAM优化器示例
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='Adam', lr=0.0003, weight_decay=0.0001))
自定义优化器实现
1. 实现新优化器类
在项目中创建新的优化器需要以下步骤:
from mmdet.registry import OPTIMIZERS
from torch.optim import Optimizer
@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):
"""自定义优化器实现示例"""
def __init__(self, params, a, b, c, **kwargs):
# 实现初始化逻辑
super().__init__(params, defaults)
def step(self, closure=None):
# 实现参数更新逻辑
2. 注册优化器
有两种方式使系统识别新优化器:
- 修改__init__.py:在对应目录的
__init__.py中导入新类 - 配置导入:通过
custom_imports动态导入
# 方法二:配置动态导入
custom_imports = dict(
imports=['mmdet.engine.optimizers.my_optimizer'],
allow_failed_imports=False)
3. 配置使用
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='MyOptimizer', a=1.0, b=0.5, c=0.1))
优化器包装器定制
对于需要精细控制参数优化策略的场景,可以自定义优化器包装器:
from mmengine.optim import DefaultOptimWrapperConstructor
from mmdet.registry import OPTIM_WRAPPER_CONSTRUCTORS
@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
class MyOptimizerWrapperConstructor(DefaultOptimWrapperConstructor):
"""自定义优化器包装器示例"""
def __call__(self, model):
# 实现参数分组逻辑
return optim_wrapper
高级优化技巧
梯度裁剪
optim_wrapper = dict(
_delete_=True, # 覆盖基础配置
clip_grad=dict(max_norm=35, norm_type=2))
动量调度
配合学习率调度器使用可加速收敛:
param_scheduler = [
# 学习率调度
dict(type='CosineAnnealingLR', T_max=8, eta_min=lr*10),
# 动量调度
dict(type='CosineAnnealingMomentum', T_max=8, eta_min=0.85)
]
训练调度策略定制
常用学习率策略
多项式衰减策略
param_scheduler = [
dict(type='PolyLR', power=0.9, eta_min=1e-4, begin=0, end=8)
]
余弦退火策略
param_scheduler = [
dict(type='CosineAnnealingLR', T_max=8, eta_min=lr*1e-5)
]
训练循环定制
基于轮次的训练循环
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=12,
val_begin=1, # 从第1轮开始验证
val_interval=1) # 每轮验证一次
基于迭代的动态训练循环
train_cfg = dict(
type='IterBasedTrainLoop',
max_iters=368750,
val_interval=5000,
dynamic_intervals=[(365001, 368750)]) # 后期调整验证间隔
钩子机制深度定制
自定义钩子实现
1. 创建新钩子
from mmengine.hooks import Hook
from mmdet.registry import HOOKS
@HOOKS.register_module()
class MyHook(Hook):
"""自定义训练钩子示例"""
def before_train_epoch(self, runner):
# 训练周期开始前执行
pass
def after_train_iter(self, runner, batch_idx, data_batch, outputs):
# 训练迭代结束后执行
pass
2. 注册与使用
custom_hooks = [
dict(type='MyHook', a=1.0, b=2.0, priority='NORMAL')
]
内置钩子配置
检查点钩子
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=1, # 保存间隔(epoch)
max_keep_ckpts=3, # 最大保留检查点数
save_optimizer=True)) # 是否保存优化器状态
日志钩子
default_hooks = dict(
logger=dict(type='LoggerHook', interval=50)) # 每50次迭代记录一次
可视化钩子
vis_backends = [
dict(type='LocalVisBackend'), # 本地可视化
dict(type='TensorboardVisBackend') # TensorBoard支持
]
visualizer = dict(
type='DetLocalVisualizer',
vis_backends=vis_backends,
name='visualizer')
结语
通过本文介绍的各种定制方法,研究人员可以灵活调整Hi-FT/ERD项目的训练过程,实现从基础参数配置到深度定制化的全方位控制。建议根据具体任务需求,先从基础配置开始,逐步尝试高级定制功能,以获得最佳模型性能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
455
3.39 K
Ascend Extension for PyTorch
Python
258
291
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
173
63
暂无简介
Dart
707
168
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
835
411
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
React Native鸿蒙化仓库
JavaScript
282
331
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
393
131
openGauss kernel ~ openGauss is an open source relational database management system
C++
164
222