Drake项目中IRIS-ZO算法支持附加约束的设计与实现
背景介绍
在机器人运动规划领域,Drake项目提供了多种算法用于生成安全的配置空间区域。其中IRIS-NP算法(在Drake中实现为IrisInConfigurationSpace)允许用户通过prog_with_additional_constraints选项指定生成区域需要满足的额外约束条件。然而,其变种算法IRIS-ZO(在Drake中实现为IrisZo)目前尚未支持这一功能。
技术挑战
在Drake项目中实现IRIS-ZO算法的附加约束支持面临几个关键技术挑战:
-
接口设计选择:需要考虑是通过创建CollisionChecker的子类来支持附加约束,还是通过扩展IrisZoOptions结构体来实现。
-
线程安全考量:许多"有趣"的约束由于需要MbP上下文而无法保证线程安全,这会限制并行化能力。
-
资源管理复杂性:CollisionChecker已经需要管理每线程资源,添加具有复杂资源管理需求的任意约束会使文档和维护变得更加困难。
解决方案
经过项目成员讨论,最终确定了以下实现方案:
-
避免修改CollisionChecker:基于CollisionChecker当前的复杂性,决定不通过创建子类的方式实现,而是采用类似IrisInConfigurationSpace的方法。
-
采用prog_with_additional_constraints模式:在IrisZoOptions中添加一个辅助MathematicalProgram字段,允许用户添加需要满足的额外约束。
-
支持EvaluatorConstraint:对于数学函数形式的约束,可以通过EvaluatorConstraint实现,并标记其线程安全状态。
-
未来规划:对于更复杂的MbP相关约束,计划通过IRIS-NP2算法(issue #21822)实现,该算法不依赖并行化,可以直接与用户提供的约束接口。
实现细节
在具体实现上,需要注意以下几点:
-
约束类型处理:系统需要能够处理各种形式的约束,包括但不限于关节限制、稳定性约束等。
-
线程安全机制:虽然部分约束可以标记为线程安全,但实现需要考虑大多数约束无法保证线程安全的现实情况。
-
性能优化:在添加约束后,需要确保算法性能不会受到显著影响。
技术影响
这一改进将为Drake用户带来以下好处:
-
更高的灵活性:用户可以为生成的区域指定自定义约束条件。
-
更好的兼容性:与现有IRIS-NP算法保持一致的接口设计。
-
更广泛的应用场景:支持更多种类的机器人规划问题。
总结
通过在IRIS-ZO算法中支持附加约束,Drake项目进一步提升了其在机器人运动规划领域的实用性和灵活性。这一改进不仅保持了与现有算法的一致性,也为未来更复杂的约束处理奠定了基础。虽然目前实现主要针对线程安全的数学约束,但通过IRIS-NP2的规划,项目组已经为处理更复杂的MbP相关约束做好了技术准备。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00