Datahike项目支持Datalog查询中的集合形式Pull模式
在Datahike这个开源数据库项目中,最近实现了一个重要功能改进——支持在Datalog查询中使用集合形式的pull模式。这一改进使得Datahike与Datomic在查询语法上更加兼容,为开发者提供了更灵活的数据检索方式。
Pull模式的基本概念
Pull模式是Datalog查询语言中一种强大的数据提取机制,它允许开发者指定要从数据库中检索的实体属性。传统上,Datahike要求pull模式必须是一个序列(如向量或列表),例如[:name :age]。这种语法虽然有效,但与Datomic不完全一致,因为Datomic还支持使用集合形式(如#{:name :age})作为pull模式。
技术实现细节
Datahike通过更新其依赖的datalog-parser库(版本升级至0.2.29)来实现这一功能。datalog-parser是负责解析Datalog查询语句的核心组件,此次更新使其能够正确识别和处理集合形式的pull模式。
在底层实现上,解析器现在能够:
- 识别查询中的集合语法
- 将集合转换为内部表示形式
- 保持与序列形式pull模式相同的处理逻辑
实际应用示例
开发者现在可以编写如下查询:
(d/q '[:find (pull ?e #{:name}) .
:where [?e :age 25]]
test-db)
这个查询会返回所有年龄为25岁的实体,但只提取它们的name属性。结果将以映射形式呈现,如{:name "Ivan"}。
兼容性考虑
这一改进特别考虑了与Datomic的语法兼容性。许多从Datomic迁移到Datahike的项目可以继续使用原有的查询语法,减少了迁移成本。同时,Datahike仍然支持原有的序列形式pull模式,确保向后兼容。
开发者价值
对于开发者而言,这一改进带来了以下好处:
- 更灵活的查询语法选择
- 更好的Datomic兼容性
- 更直观的数据提取方式(特别是当属性顺序不重要时)
- 减少语法转换的工作量
集合形式的pull模式特别适合那些属性顺序无关紧要的场景,使查询意图更加清晰。这一改进虽然看似微小,但却能显著提升开发体验和代码可读性。
Datahike团队通过这样的持续改进,不断优化开发者体验,同时保持与Datalog生态系统的兼容性,巩固了其作为Datomic替代方案的地位。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00