Kyuubi项目中查询状态提前返回但作业仍在执行的问题分析
Apache Kyuubi是一个开源的分布式SQL引擎,为用户提供了统一的JDBC/ODBC接口来访问不同的计算引擎。在实际生产环境中,用户报告了一个重要问题:当通过Kyuubi提交查询到Spark时,Kyuubi会快速返回查询完成状态(FINISH_STATE),但实际上Spark作业仍在继续执行。
问题现象
用户在使用Kyuubi 1.8.0至1.9.0版本与Spark 3.4.2组合时,发现特定类型的SQL查询会出现状态不一致的情况。具体表现为:
- 执行包含空表与大表连接的查询时
- Kyuubi在几秒内返回FINISHED状态
- 但Spark UI显示相关作业仍在运行,持续占用集群资源
- 手动取消操作后,作业才会真正停止
问题复现与定位
通过分析用户提供的复现案例,可以确定问题出现的典型场景是:当查询中包含一个空表(0行)与大表(数亿行)的连接操作时,Kyuubi会过早地认为查询已完成。
技术团队尝试复现该问题,发现关键在于:
- 查询必须包含连接操作
- 其中一侧的表必须是空表
- 另一侧的表数据量需要足够大
- 使用Spark自适应查询执行(AQE)特性
技术原理分析
深入分析该问题的技术原理:
-
Spark查询优化机制:当Spark检测到连接操作的一侧为空表时,会优化掉整个连接操作,直接返回空结果。这是Spark的合理优化行为。
-
状态报告机制:Kyuubi基于Spark的作业状态来判断查询状态。当Spark优化掉主要操作后,Kyuubi会立即收到完成信号。
-
资源释放问题:虽然主查询逻辑已被优化,但Spark仍可能继续执行另一侧表的计算任务,这些任务实际上已无意义但仍占用资源。
-
API差异:通过REST API提交的查询比通过Beeline提交的查询更容易出现此问题,这与会话生命周期管理有关。
解决方案
针对这一问题,社区提出了以下解决方案:
-
主动取消机制:在查询逻辑完成后,主动取消剩余的Spark作业。这需要修改Kyuubi核心代码,在适当位置调用SparkContext的cancelJobGroup方法。
-
会话生命周期管理:确保通过REST API创建的会话能够正确关闭,释放所有相关资源。
-
用户侧临时方案:在应用代码中,当收到FINISHED状态后,手动关闭操作以释放资源。
最佳实践建议
基于这一问题的分析,建议用户:
-
对于生产环境,考虑升级到包含修复的Kyuubi版本
-
在编写SQL时,对于可能产生空结果的子查询,添加适当的过滤条件
-
监控长时间运行的Spark作业,及时发现并处理异常情况
-
在使用REST API时,确保正确处理会话和操作的生命周期
这一问题的解决不仅修复了特定场景下的行为异常,也完善了Kyuubi与Spark集成的健壮性,为大规模数据处理提供了更可靠的保障。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









