Raspberry Pi Pico SDK中Flash操作导致PSRAM配置寄存器被覆盖的问题分析
问题背景
在Raspberry Pi Pico SDK开发过程中,开发者发现当执行flash_range_erase或flash_range_program等Flash操作后,PSRAM(QMI接口)的配置寄存器会被意外修改,导致PSRAM无法正常访问。这个问题主要影响使用外部PSRAM的Pico开发板,如Pimoroni PGA2350。
技术细节
问题现象
在执行Flash操作前后,通过对比QMI接口的寄存器值,可以观察到以下变化:
-
执行前:
qmi_hw->m[1].timing= 61a48102qmi_hw->m[1].rfmt= 000612aaqmi_hw->m[1].rcmd= 000000ebqmi_hw->m[1].wfmt= 000012aaqmi_hw->m[1].wcmd= 00000038xip_ctrl_hw->ctrl= 00000883
-
执行后:
qmi_hw->m[1].timing= 60007203qmi_hw->m[1].rfmt= 000492a8- 其他寄存器保持不变
这种变化导致PSRAM接口无法正常工作,只有手动恢复原始寄存器值后才能重新访问PSRAM数据。
根本原因
问题根源在于RP2350的ROM代码行为。当执行Flash操作时,系统会调用flash_exit_xip()函数,该函数会将QMI窗口1和窗口2的寄存器重置为安全默认值(慢速03h模式)。这种重置行为是为了确保芯片在退出XIP模式时的稳定性,但对于已经配置好的PSRAM接口来说,这种重置会导致配置丢失。
特别需要注意的是,默认的boot2(XIP设置函数)并不会配置QMI窗口1,而ROM代码会在flash_exit_xip()开始时将两个窗口都重置为安全默认值。
解决方案
临时解决方案
目前有两种可行的临时解决方案:
-
寄存器保存与恢复:在执行Flash操作前后,手动保存和恢复QMI窗口1的寄存器值。这种方法已被CircuitPython项目采用,证明其有效性。
-
修改Flash操作函数:对于RP2350芯片,可以复制
flash_range_erase和flash_range_program函数的代码,移除其中的flash_exit_xip_func()和flash_enable_xip_via_boot2()调用。这种方法需要确保函数不会被内联到Flash中(使用__no_inline_not_in_flash_func修饰)。
长期解决方案
SDK团队提出了两种可能的长期解决方案:
-
条件式保存恢复:当
FLASH_DEVINFO_CS1_SIZE为零时,SDK应该在ROM调用前后保存和恢复qmi_hw->m[1]寄存器。这样可以避免在开发者忽略ROM对第二个片选支持的情况下破坏寄存器配置,同时允许ROM在需要对第二个片选发出XIP退出序列时重新初始化m[1]寄存器。 -
完整的XIP初始化:更理想的解决方案是在XIP设置中(重新)初始化两个QSPI设备。这需要更全面的工作来覆盖所有可能的情况和组合,但能从根本上解决问题。
开发者建议
对于需要使用PSRAM的开发者,建议:
- 如果使用SDK的Flash操作函数,应该实现寄存器保存恢复机制
- 密切关注SDK更新,等待官方修复
- 在开发过程中注意检查PSRAM访问是否正常,特别是在Flash操作后
- 考虑将关键数据缓存在SRAM中,避免频繁访问PSRAM
这个问题凸显了在嵌入式系统中多存储器协同工作时可能出现的配置冲突,开发者需要特别注意不同存储介质的初始化顺序和配置保持问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00