Dagu项目中的RepeatPolicy字段功能增强解析
在Dagu工作流引擎的最新版本v1.17.0-beta.1中,对RepeatPolicy字段进行了重要功能增强,为开发者提供了更灵活的任务重复执行控制机制。本文将深入解析这些增强功能的技术实现和使用场景。
RepeatPolicy基础概念
RepeatPolicy是Dagu工作流定义中控制步骤重复执行的关键字段。在增强之前,它主要通过简单的间隔时间配置来控制步骤的重复执行频率。新版本通过引入多种条件判断机制,大幅提升了其灵活性和实用性。
条件判断机制增强
1. 字符串匹配条件
新增了基于输出内容匹配的重复控制机制。开发者可以配置期望的输出内容,系统会持续重复执行步骤直到实际输出与期望值匹配。
step:
- name: step1
command: xxx
repeatPolicy:
condition: "foo" # 实际输出
expected: "foo" # 期望输出
intervalSec: 30 # 检查间隔
这种机制特别适用于需要等待特定输出结果的任务场景,如API调用等待特定响应。
2. 命令替换功能
进一步增强了字符串匹配的灵活性,支持在条件中使用命令替换语法:
step:
- name: step1
command: xxx
repeatPolicy:
condition: "`echo foo`" # 支持命令替换
expected: "foo"
intervalSec: 30
这使得条件判断可以基于动态生成的字符串,大大增强了配置的灵活性。
3. 直接命令执行条件
最强大的增强是支持直接使用命令执行结果作为重复条件:
step:
- name: step1
command: xxx
repeatPolicy:
condition: "test -f /tmp/flag" # 当命令返回0时继续重复
intervalSec: 30
这种机制会持续重复步骤,直到条件命令返回非零状态码。它非常适合需要等待文件创建、服务可用等系统状态变化的场景。
4. 退出码控制
除了新增功能外,还完善了对命令退出码的控制支持:
step:
- name: step1
command: xxx
repeatPolicy:
exitCode: [0, 1] # 当退出码为0或1时继续重复
intervalSec: 30
设计考量与技术实现
这些增强功能的设计参考了Dagu现有的Precondition机制,保持了配置语法的一致性。在实现上有几个关键点:
-
条件判断逻辑分为两类:当同时配置condition和expected时执行字符串匹配;当只配置condition时执行命令状态判断。
-
条件字段支持环境变量引用,可以与步骤输出(output字段)结合使用,实现基于前一步执行结果的动态判断。
-
命令执行条件遵循Unix惯例,返回0表示成功/继续重复,非0表示停止重复。
实际应用场景
这些增强功能在实际工作流管理中非常实用:
-
服务等待:可以设置条件检查服务端口是否可用,实现服务启动等待。
-
文件等待:检查特定文件是否存在或内容是否符合要求。
-
API轮询:定期调用API并检查返回内容,直到获得预期结果。
-
复杂条件组合:通过命令替换实现多条件组合判断。
总结
Dagu v1.17.0-beta.1中对RepeatPolicy的增强显著提升了工作流步骤重复控制的灵活性和实用性。通过引入多种条件判断机制,开发者可以更精确地控制步骤的重复执行逻辑,满足各种复杂的自动化场景需求。这些改进使Dagu在工作流自动化领域的竞争力得到进一步提升。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00