Dagu项目中的RepeatPolicy字段功能增强解析
在Dagu工作流引擎的最新版本v1.17.0-beta.1中,对RepeatPolicy字段进行了重要功能增强,为开发者提供了更灵活的任务重复执行控制机制。本文将深入解析这些增强功能的技术实现和使用场景。
RepeatPolicy基础概念
RepeatPolicy是Dagu工作流定义中控制步骤重复执行的关键字段。在增强之前,它主要通过简单的间隔时间配置来控制步骤的重复执行频率。新版本通过引入多种条件判断机制,大幅提升了其灵活性和实用性。
条件判断机制增强
1. 字符串匹配条件
新增了基于输出内容匹配的重复控制机制。开发者可以配置期望的输出内容,系统会持续重复执行步骤直到实际输出与期望值匹配。
step:
- name: step1
command: xxx
repeatPolicy:
condition: "foo" # 实际输出
expected: "foo" # 期望输出
intervalSec: 30 # 检查间隔
这种机制特别适用于需要等待特定输出结果的任务场景,如API调用等待特定响应。
2. 命令替换功能
进一步增强了字符串匹配的灵活性,支持在条件中使用命令替换语法:
step:
- name: step1
command: xxx
repeatPolicy:
condition: "`echo foo`" # 支持命令替换
expected: "foo"
intervalSec: 30
这使得条件判断可以基于动态生成的字符串,大大增强了配置的灵活性。
3. 直接命令执行条件
最强大的增强是支持直接使用命令执行结果作为重复条件:
step:
- name: step1
command: xxx
repeatPolicy:
condition: "test -f /tmp/flag" # 当命令返回0时继续重复
intervalSec: 30
这种机制会持续重复步骤,直到条件命令返回非零状态码。它非常适合需要等待文件创建、服务可用等系统状态变化的场景。
4. 退出码控制
除了新增功能外,还完善了对命令退出码的控制支持:
step:
- name: step1
command: xxx
repeatPolicy:
exitCode: [0, 1] # 当退出码为0或1时继续重复
intervalSec: 30
设计考量与技术实现
这些增强功能的设计参考了Dagu现有的Precondition机制,保持了配置语法的一致性。在实现上有几个关键点:
-
条件判断逻辑分为两类:当同时配置condition和expected时执行字符串匹配;当只配置condition时执行命令状态判断。
-
条件字段支持环境变量引用,可以与步骤输出(output字段)结合使用,实现基于前一步执行结果的动态判断。
-
命令执行条件遵循Unix惯例,返回0表示成功/继续重复,非0表示停止重复。
实际应用场景
这些增强功能在实际工作流管理中非常实用:
-
服务等待:可以设置条件检查服务端口是否可用,实现服务启动等待。
-
文件等待:检查特定文件是否存在或内容是否符合要求。
-
API轮询:定期调用API并检查返回内容,直到获得预期结果。
-
复杂条件组合:通过命令替换实现多条件组合判断。
总结
Dagu v1.17.0-beta.1中对RepeatPolicy的增强显著提升了工作流步骤重复控制的灵活性和实用性。通过引入多种条件判断机制,开发者可以更精确地控制步骤的重复执行逻辑,满足各种复杂的自动化场景需求。这些改进使Dagu在工作流自动化领域的竞争力得到进一步提升。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









