Atomic Red Team测试模块依赖问题的分析与解决
问题背景
在使用Atomic Red Team进行T1218.005测试时,用户遇到了"invoke-athhtmlapplication命令无法识别"的错误。这个错误表明系统无法找到执行测试所需的PowerShell命令,而该命令实际上属于AtomicTestHarnesses模块的一部分。
错误分析
当用户尝试执行以下命令时:
Invoke-AtomicTest T1218.005 -Session $session
系统返回错误信息指出"invoke-athhtmlapplication"不是有效的cmdlet、函数、脚本文件或可执行程序。这通常意味着:
- 所需的AtomicTestHarnesses模块未安装
- 模块已安装但未正确导入当前会话
- 模块安装路径不在系统PATH环境变量中
根本原因
深入分析Atomic Red Team的T1218.005测试定义文件,发现虽然测试的"get_prereq_command"部分包含了安装AtomicTestHarnesses模块的注释代码,但实际并未执行。这是因为:
- 预安装命令被注释掉了(行首有#号)
- 测试执行器默认不会自动处理预安装步骤
- 远程会话环境下模块不会自动传播
解决方案
针对这个问题,可以通过修改测试定义文件来确保依赖模块的正确安装和加载。修改后的executor部分应包含以下关键步骤:
- 强制安装AtomicTestHarnesses模块到当前用户作用域
- 设置执行策略以允许脚本运行
- 显式导入模块
- 最后执行实际的测试命令
具体实现如下:
executor:
command: |
Install-Module -Name AtomicTestHarnesses -Scope CurrentUser -Force
Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass -Force
Import-Module AtomicTestHarnesses -Force
Invoke-ATHHTMLApplication -HTAFilePath #{hta_file_path} -ScriptEngine #{script_engine} -AsLocalUNCPath -SimulateLateralMovement -MSHTAFilePath #{mshta_file_path}
name: powershell
技术要点
-
模块安装作用域:使用
-Scope CurrentUser参数确保模块安装在用户目录下,避免需要管理员权限 -
执行策略设置:临时设置进程级别的执行策略为Bypass,确保脚本可以运行而不影响系统全局设置
-
模块导入:即使模块已安装,也需要显式导入才能在当前会话中使用其命令
-
远程执行考虑:在远程会话(如通过$session参数)中执行时,需要确保模块在远程主机上可用
最佳实践建议
-
对于依赖外部模块的Atomic测试,建议在测试定义中明确包含依赖安装步骤
-
在团队环境中使用Atomic Red Team时,可以考虑预先在所有目标系统上安装常用依赖模块
-
对于持续集成/自动化测试场景,建议创建包含所有必要依赖的基础镜像
-
开发自定义Atomic测试时,确保正确处理依赖关系,可以通过
get_prereq_command和cleanup_command实现完整的测试生命周期管理
总结
通过分析这个具体案例,我们了解到在使用Atomic Red Team框架时,正确处理测试依赖关系的重要性。特别是在远程执行和自动化测试场景下,确保所有依赖模块可用是测试成功执行的关键。本文提供的解决方案不仅解决了当前问题,也为处理类似情况提供了参考模式。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00