OpenBMB/OmniLMM项目中特殊令牌嵌入问题的技术解析
2025-05-11 20:53:07作者:瞿蔚英Wynne
在基于OpenBMB/OmniLMM项目进行多模态模型开发时,开发者可能会遇到一个常见的警告信息:"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained"。这个警告虽然不会直接导致程序中断,但理解其背后的技术原理对于确保模型性能至关重要。
问题本质分析
该警告信息表明模型词汇表中添加了特殊令牌(如[CLS]、[SEP]等),但这些特殊令牌对应的词嵌入向量可能没有被充分训练或微调。在自然语言处理和多模态模型中,特殊令牌承担着重要的结构功能,它们的嵌入质量直接影响模型对输入序列的理解能力。
技术背景
现代Transformer架构的预训练模型通常包含两类令牌:
- 常规词汇令牌:对应自然语言中的实际词汇
- 特殊功能令牌:用于标记序列开始/结束、分隔不同部分等特殊功能
当模型加载预训练权重时,如果词汇表配置与原始预训练时不一致(特别是新增了特殊令牌),就会产生这种警告。在多模态场景下,这个问题更为常见,因为图像和文本的联合处理往往需要额外的特殊令牌。
解决方案
对于OpenBMB/OmniLMM这类多模态项目,推荐以下处理方式:
-
主动忽略策略:如果确认新增的特殊令牌不影响核心功能,可以使用
transformers.logging.set_verbosity_error()
屏蔽该警告 -
嵌入微调方案:
- 对新增的特殊令牌进行针对性微调
- 在模型初始化后,通过少量数据对这些特殊令牌的嵌入进行训练
- 使用适配器(Adapter)技术单独调整特殊令牌的表示
-
初始化优化:
# 示例:对新增特殊令牌进行合理初始化 special_tokens = ["<new_special>"] tokenizer.add_special_tokens({"additional_special_tokens": special_tokens}) model.resize_token_embeddings(len(tokenizer)) # 获取新增令牌的ID new_token_id = tokenizer.convert_tokens_to_ids("<new_special>") # 使用已有令牌的嵌入均值进行初始化 with torch.no_grad(): mean_embedding = model.get_input_embeddings().weight.mean(dim=0) model.get_input_embeddings().weight[new_token_id] = mean_embedding
最佳实践建议
- 在多模态项目开发中,应预先规划好所需的特殊令牌集合
- 对于必须新增的特殊令牌,建议在预训练阶段就加入词汇表
- 微调阶段应包含足够多的特殊令牌使用实例
- 定期检查特殊令牌的嵌入向量是否偏离正常范围
理解并正确处理特殊令牌的嵌入问题,是确保OpenBMB/OmniLMM等多模态模型发挥最佳性能的重要环节。开发者应当根据具体应用场景,选择最适合的处理策略。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133