Chimera项目技术文档
1. 安装指南
Chimera 可以通过 npm 进行安装,操作如下:
npm install chimera
安装过程会自动下载适用于您操作系统的 Chimera 二进制文件。目前支持 64 位 Darwin(mac)和 64 位 Linux。如果您使用的是其他平台,您可能需要自行编译或者等待我为您构建适用于该平台的版本。
2. 项目的使用说明
Chimera 的基本使用方法如下:
var Chimera = require('chimera').Chimera;
var c = new Chimera();
c.perform({
url: "http://www.google.com",
locals: {},
run: function(callback) {
callback(null, "success");
},
callback: function(err, result) {
// 处理结果
}
});
使用 new Chimera() 实例化一个新的 Chimera 时,您实际上是在创建一个新的浏览器实例,它不会与其他浏览器实例共享会话数据。它拥有自己的内存 cookie 数据库和 URL 历史。
locals 对象应包含您希望传递给网页的变量。这些值应能转换为 JSON 类型,因为浏览器的 JS 引擎沙盒环境阻止我们传递实际的 nodejs 变量引用。
run 函数在页面加载时立即执行。如果您希望在页面完全加载后执行逻辑,则需要等待,就像在网页中嵌入的正常 JavaScript 代码一样。例如,如果您使用 jQuery,您会执行标准的 $(document).ready(function(){...}) 类型的代码来等待页面完全加载。请注意,run 函数在网页中运行,因此您无法访问 nodejs 作用域中的任何变量。callback 参数应在您准备好暂停浏览器实例并将控制权返回给 nodejs 世界时调用。
callback 函数在 nodejs 上下文中运行,因此您将可以访问作用域中的变量。此函数在 run() 中调用回调函数时执行。
3. 项目API使用文档
以下是创建新的浏览器实例时所有可能的选项:
userAgent: 任何代表用户代理的字符串。默认使用示例中显示的字符串,一个 windows chrome 浏览器。libraryCode: 如果您希望在所有网页中注入 jQuery,您可以在此处使用fs.readFileSync("jquery.js")。cookies: 如后面的示例所示,您可以从上一个浏览器实例保存 cookies 并在此处使用它们。disableImages: 如果您的爬虫不需要图像,此选项可以大幅减少内存使用并加快页面加载速度。但是,您的截图可能看起来会很糟糕。
4. 项目安装方式
如安装指南所述,您可以通过 npm 来安装 Chimera。如果您的平台没有预编译的二进制文件,您需要按照以下步骤自行编译:
在 Mac 上编译
在 Mac 上获取二进制文件相当简单,但编译 Qt 需要很长时间。与 Linux 不同,您不需要包含在 Chimera 中的自定义 openssl。以下是 Mac 上的基本步骤:
./scripts/compile_qt.sh
./scripts/compile_binary.sh
最终的二进制文件应该位于 node-chimera/lib 目录中。
在 Linux 上编译
您首先需要安装 ssl 头文件、freetype 和 fontconfig 库,因此您需要执行如下命令安装:
apt-get install libfreetype6-dev libfontconfig1-dev libssl-dev
由于 nodejs 带有自己的 ssl 版本,我们必须让 Qt 也使用这个版本的 ssl,否则会出现段错误。首先编译包含的 openssl(我们有 -fPIC 等额外标志,允许库被静态包含)。以下是构建 Chimera 的所有步骤:
./scripts/compile_openssl.sh
./scripts/compile_qt.sh
./scripts/compile_binary.sh
最终的 chimera.node 二进制文件应该存在于 node-chimera/lib 目录中。如果您在该目录中没有找到它,那么构建过程中很可能出现了问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00