在Garak项目中配置LM Studio本地模型的完整指南
2025-06-14 15:45:13作者:蔡丛锟
Garak作为一个开源项目,提供了强大的模型评估能力。本文将详细介绍如何配置Garak以使用本地运行的LM Studio模型进行测试评估。
LM Studio简介
LM Studio是一款允许用户在本地运行大型语言模型的工具,它提供了与标准API兼容的接口。通过LM Studio,开发者可以在个人电脑上部署和测试各种GGUF格式的量化模型,如Llama-2系列模型。
配置步骤
1. 准备LM Studio环境
首先确保已在本地运行LM Studio,并加载了目标模型(如TheBloke/Llama-2-7B-Chat-GGUF)。LM Studio默认会在本地5000端口提供服务。
2. 创建配置文件
为Garak创建一个JSON格式的配置文件(如lm_studio.json),内容如下:
{
"litellm": {
"LiteLLMGenerator": {
"api_base": "http://localhost:5000/v1",
"provider": "standard_api",
"api_key": "test"
}
}
}
这个配置文件告诉Garak:
- 使用litellm作为生成器
- API基础地址指向本地5000端口的LM Studio服务
- 提供者类型为标准API(因为LM Studio兼容标准API)
- 设置一个虚拟的api_key(LM Studio本地运行通常不需要验证)
3. 运行Garak评估
使用以下命令启动Garak评估:
python -m garak \
--model_type litellm \
--generator_option_file lm_studio.json \
--model_name TheBloke/Llama-2-7B-Chat-GGUF \
--probes donotanswer.DiscriminationExclusionToxicityHatefulOffensive
参数说明:
--model_type litellm:指定使用litellm作为模型接口--generator_option_file:指定配置文件路径--model_name:虽然LM Studio已加载模型,但仍需指定模型名称用于记录--probes:指定要运行的探测测试集
技术细节解析
-
API兼容性:LM Studio实现了标准API兼容接口,因此Garak可以通过标准客户端与其交互。
-
本地部署优势:相比云端模型,本地运行的LM Studio提供了更好的隐私保护和可控性,特别适合需要保密的数据测试。
-
模型选择:GGUF格式的量化模型在保持较好性能的同时,显著降低了硬件需求,使7B参数级别的模型可以在消费级硬件上运行。
常见问题解决方案
-
连接失败:检查LM Studio是否正常运行,端口是否被防火墙阻止。
-
性能问题:根据硬件配置调整LM Studio的线程数和批处理大小。
-
模型加载:确保在LM Studio中正确加载了指定的GGUF模型文件。
通过以上配置,开发者可以充分利用Garak的评估能力对本地运行的LM Studio模型进行全面测试,为模型优化和应用部署提供可靠依据。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178