在Garak项目中配置LM Studio本地模型的完整指南
2025-06-14 17:39:00作者:蔡丛锟
Garak作为一个开源项目,提供了强大的模型评估能力。本文将详细介绍如何配置Garak以使用本地运行的LM Studio模型进行测试评估。
LM Studio简介
LM Studio是一款允许用户在本地运行大型语言模型的工具,它提供了与标准API兼容的接口。通过LM Studio,开发者可以在个人电脑上部署和测试各种GGUF格式的量化模型,如Llama-2系列模型。
配置步骤
1. 准备LM Studio环境
首先确保已在本地运行LM Studio,并加载了目标模型(如TheBloke/Llama-2-7B-Chat-GGUF)。LM Studio默认会在本地5000端口提供服务。
2. 创建配置文件
为Garak创建一个JSON格式的配置文件(如lm_studio.json),内容如下:
{
"litellm": {
"LiteLLMGenerator": {
"api_base": "http://localhost:5000/v1",
"provider": "standard_api",
"api_key": "test"
}
}
}
这个配置文件告诉Garak:
- 使用litellm作为生成器
- API基础地址指向本地5000端口的LM Studio服务
- 提供者类型为标准API(因为LM Studio兼容标准API)
- 设置一个虚拟的api_key(LM Studio本地运行通常不需要验证)
3. 运行Garak评估
使用以下命令启动Garak评估:
python -m garak \
--model_type litellm \
--generator_option_file lm_studio.json \
--model_name TheBloke/Llama-2-7B-Chat-GGUF \
--probes donotanswer.DiscriminationExclusionToxicityHatefulOffensive
参数说明:
--model_type litellm:指定使用litellm作为模型接口--generator_option_file:指定配置文件路径--model_name:虽然LM Studio已加载模型,但仍需指定模型名称用于记录--probes:指定要运行的探测测试集
技术细节解析
-
API兼容性:LM Studio实现了标准API兼容接口,因此Garak可以通过标准客户端与其交互。
-
本地部署优势:相比云端模型,本地运行的LM Studio提供了更好的隐私保护和可控性,特别适合需要保密的数据测试。
-
模型选择:GGUF格式的量化模型在保持较好性能的同时,显著降低了硬件需求,使7B参数级别的模型可以在消费级硬件上运行。
常见问题解决方案
-
连接失败:检查LM Studio是否正常运行,端口是否被防火墙阻止。
-
性能问题:根据硬件配置调整LM Studio的线程数和批处理大小。
-
模型加载:确保在LM Studio中正确加载了指定的GGUF模型文件。
通过以上配置,开发者可以充分利用Garak的评估能力对本地运行的LM Studio模型进行全面测试,为模型优化和应用部署提供可靠依据。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.27 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
402
仓颉编程语言运行时与标准库。
Cangjie
130
415