在Garak项目中配置LM Studio本地模型的完整指南
2025-06-14 12:35:26作者:蔡丛锟
Garak作为一个开源项目,提供了强大的模型评估能力。本文将详细介绍如何配置Garak以使用本地运行的LM Studio模型进行测试评估。
LM Studio简介
LM Studio是一款允许用户在本地运行大型语言模型的工具,它提供了与标准API兼容的接口。通过LM Studio,开发者可以在个人电脑上部署和测试各种GGUF格式的量化模型,如Llama-2系列模型。
配置步骤
1. 准备LM Studio环境
首先确保已在本地运行LM Studio,并加载了目标模型(如TheBloke/Llama-2-7B-Chat-GGUF)。LM Studio默认会在本地5000端口提供服务。
2. 创建配置文件
为Garak创建一个JSON格式的配置文件(如lm_studio.json),内容如下:
{
"litellm": {
"LiteLLMGenerator": {
"api_base": "http://localhost:5000/v1",
"provider": "standard_api",
"api_key": "test"
}
}
}
这个配置文件告诉Garak:
- 使用litellm作为生成器
- API基础地址指向本地5000端口的LM Studio服务
- 提供者类型为标准API(因为LM Studio兼容标准API)
- 设置一个虚拟的api_key(LM Studio本地运行通常不需要验证)
3. 运行Garak评估
使用以下命令启动Garak评估:
python -m garak \
--model_type litellm \
--generator_option_file lm_studio.json \
--model_name TheBloke/Llama-2-7B-Chat-GGUF \
--probes donotanswer.DiscriminationExclusionToxicityHatefulOffensive
参数说明:
--model_type litellm:指定使用litellm作为模型接口--generator_option_file:指定配置文件路径--model_name:虽然LM Studio已加载模型,但仍需指定模型名称用于记录--probes:指定要运行的探测测试集
技术细节解析
-
API兼容性:LM Studio实现了标准API兼容接口,因此Garak可以通过标准客户端与其交互。
-
本地部署优势:相比云端模型,本地运行的LM Studio提供了更好的隐私保护和可控性,特别适合需要保密的数据测试。
-
模型选择:GGUF格式的量化模型在保持较好性能的同时,显著降低了硬件需求,使7B参数级别的模型可以在消费级硬件上运行。
常见问题解决方案
-
连接失败:检查LM Studio是否正常运行,端口是否被防火墙阻止。
-
性能问题:根据硬件配置调整LM Studio的线程数和批处理大小。
-
模型加载:确保在LM Studio中正确加载了指定的GGUF模型文件。
通过以上配置,开发者可以充分利用Garak的评估能力对本地运行的LM Studio模型进行全面测试,为模型优化和应用部署提供可靠依据。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C028
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.25 K
Ascend Extension for PyTorch
Python
231
263
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869