在Garak项目中配置LM Studio本地模型的完整指南
2025-06-14 12:31:22作者:蔡丛锟
Garak作为一个开源项目,提供了强大的模型评估能力。本文将详细介绍如何配置Garak以使用本地运行的LM Studio模型进行测试评估。
LM Studio简介
LM Studio是一款允许用户在本地运行大型语言模型的工具,它提供了与标准API兼容的接口。通过LM Studio,开发者可以在个人电脑上部署和测试各种GGUF格式的量化模型,如Llama-2系列模型。
配置步骤
1. 准备LM Studio环境
首先确保已在本地运行LM Studio,并加载了目标模型(如TheBloke/Llama-2-7B-Chat-GGUF)。LM Studio默认会在本地5000端口提供服务。
2. 创建配置文件
为Garak创建一个JSON格式的配置文件(如lm_studio.json),内容如下:
{
"litellm": {
"LiteLLMGenerator": {
"api_base": "http://localhost:5000/v1",
"provider": "standard_api",
"api_key": "test"
}
}
}
这个配置文件告诉Garak:
- 使用litellm作为生成器
- API基础地址指向本地5000端口的LM Studio服务
- 提供者类型为标准API(因为LM Studio兼容标准API)
- 设置一个虚拟的api_key(LM Studio本地运行通常不需要验证)
3. 运行Garak评估
使用以下命令启动Garak评估:
python -m garak \
--model_type litellm \
--generator_option_file lm_studio.json \
--model_name TheBloke/Llama-2-7B-Chat-GGUF \
--probes donotanswer.DiscriminationExclusionToxicityHatefulOffensive
参数说明:
--model_type litellm:指定使用litellm作为模型接口--generator_option_file:指定配置文件路径--model_name:虽然LM Studio已加载模型,但仍需指定模型名称用于记录--probes:指定要运行的探测测试集
技术细节解析
-
API兼容性:LM Studio实现了标准API兼容接口,因此Garak可以通过标准客户端与其交互。
-
本地部署优势:相比云端模型,本地运行的LM Studio提供了更好的隐私保护和可控性,特别适合需要保密的数据测试。
-
模型选择:GGUF格式的量化模型在保持较好性能的同时,显著降低了硬件需求,使7B参数级别的模型可以在消费级硬件上运行。
常见问题解决方案
-
连接失败:检查LM Studio是否正常运行,端口是否被防火墙阻止。
-
性能问题:根据硬件配置调整LM Studio的线程数和批处理大小。
-
模型加载:确保在LM Studio中正确加载了指定的GGUF模型文件。
通过以上配置,开发者可以充分利用Garak的评估能力对本地运行的LM Studio模型进行全面测试,为模型优化和应用部署提供可靠依据。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882