tldextract 项目技术文档
2024-12-25 09:49:25作者:翟萌耘Ralph
1. 安装指南
安装最新发布版本
你可以通过 pip 安装 tldextract 的最新发布版本:
pip install tldextract
安装开发版本
如果你想安装最新的开发版本,可以使用以下命令:
pip install -e 'git://github.com/john-kurkowski/tldextract.git#egg=tldextract'
命令行使用
安装完成后,你可以通过命令行直接使用 tldextract 来解析 URL:
tldextract http://forums.bbc.co.uk
# 输出: forums bbc co.uk
2. 项目的使用说明
tldextract 是一个用于准确分离 URL 的子域、域名和公共后缀的 Python 库。它使用 Public Suffix List (PSL) 来实现这一功能。
基本用法
以下是一个简单的使用示例:
import tldextract
# 提取 URL 的各个部分
result = tldextract.extract('http://forums.news.cnn.com/')
print(result)
# 输出: ExtractResult(subdomain='forums.news', domain='cnn', suffix='com', is_private=False)
处理不同类型的 URL
tldextract 可以处理各种类型的 URL,包括没有子域或无效后缀的 URL:
# 没有子域的 URL
result = tldextract.extract('google.com')
print(result)
# 输出: ExtractResult(subdomain='', domain='google', suffix='com', is_private=False)
# 无效后缀的 URL
result = tldextract.extract('google.notavalidsuffix')
print(result)
# 输出: ExtractResult(subdomain='google', domain='notavalidsuffix', suffix='', is_private=False)
# IP 地址的 URL
result = tldextract.extract('http://127.0.0.1:8080/deployed/')
print(result)
# 输出: ExtractResult(subdomain='', domain='127.0.0.1', suffix='', is_private=False)
重新组合原始主机名
你可以通过 registered_domain 和 fqdn 属性重新组合原始主机名:
ext = tldextract.extract('http://forums.bbc.co.uk')
print(ext.registered_domain) # 输出: bbc.co.uk
print(ext.fqdn) # 输出: forums.bbc.co.uk
3. 项目API使用文档
tldextract.extract(url)
- 功能: 提取 URL 的子域、域名和公共后缀。
- 参数:
url(str): 要解析的 URL。
- 返回值: 返回一个
ExtractResult对象,包含以下属性:subdomain(str): 子域部分。domain(str): 域名部分。suffix(str): 公共后缀部分。is_private(bool): 是否为私有域名。
tldextract.TLDExtract(suffix_list_urls=None, cache_dir=None, include_psl_private_domains=False, fallback_to_snapshot=True, extra_suffixes=None)
- 功能: 创建一个自定义的
TLDExtract实例,用于提取 URL 的各个部分。 - 参数:
suffix_list_urls(list): 自定义的公共后缀列表 URL。cache_dir(str): 缓存目录路径。include_psl_private_domains(bool): 是否包含私有域名。fallback_to_snapshot(bool): 是否在无法获取公共后缀列表时回退到内置快照。extra_suffixes(list): 额外的后缀列表。
示例
# 不使用缓存的提取器
no_cache_extract = tldextract.TLDExtract(cache_dir=None)
result = no_cache_extract('http://www.google.com')
print(result)
4. 项目安装方式
通过 pip 安装
你可以通过 pip 安装 tldextract 的最新发布版本:
pip install tldextract
通过 GitHub 安装开发版本
如果你想安装最新的开发版本,可以使用以下命令:
pip install -e 'git://github.com/john-kurkowski/tldextract.git#egg=tldextract'
命令行使用
安装完成后,你可以通过命令行直接使用 tldextract 来解析 URL:
tldextract http://forums.bbc.co.uk
# 输出: forums bbc co.uk
缓存管理
tldextract 默认会在 $HOME/.cache/python-tldextract 目录下缓存公共后缀列表。你可以通过设置 TLDEXTRACT_CACHE 环境变量或使用 cache_dir 参数来控制缓存位置。
# 自定义缓存路径
custom_cache_extract = tldextract.TLDExtract(cache_dir='/path/to/your/cache/')
custom_cache_extract('http://www.google.com')
如果你想更新缓存,可以运行以下命令:
tldextract --update
或者:
env TLDEXTRACT_CACHE="~/tldextract.cache" tldextract --update
建议在升级库后删除缓存文件以确保使用最新的公共后缀列表。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248