FreeSql中处理不确定键值对字典存储为JSON格式的实践
在实际开发中,我们经常会遇到需要存储不确定键值对个数字典数据到数据库的需求。特别是在使用PostgreSQL这类支持JSON数据类型的数据库时,如何高效地将C#中的字典数据映射为JSON格式存储是一个常见问题。本文将详细介绍在使用FreeSql ORM框架时处理这类需求的解决方案。
字典到JSON的自动映射
FreeSql提供了对Dictionary<string, string>类型的原生支持,能够自动将其映射为数据库中的JSON格式列。这种映射是开箱即用的,开发者无需进行额外的配置。
基本实现方式
- 定义实体类:首先需要定义一个包含Dictionary<string, string>类型属性的实体类
public class MyEntity
{
public int Id { get; set; }
public Dictionary<string, string> ExtraProperties { get; set; }
}
-
数据库表设计:对应的PostgreSQL表结构中,ExtraProperties列应设置为JSON或JSONB类型
-
CRUD操作:FreeSql会自动处理字典与JSON之间的转换
// 插入数据
var entity = new MyEntity
{
ExtraProperties = new Dictionary<string, string>
{
{"key1", "value1"},
{"key2", "value2"}
}
};
fsql.Insert(entity).ExecuteAffrows();
// 查询数据
var result = fsql.Select<MyEntity>().Where(e => e.Id == 1).First();
高级应用场景
复杂值类型处理
如果需要存储的值不仅仅是字符串类型,可以使用Dictionary<string, object>:
public class MyEntity
{
public int Id { get; set; }
public Dictionary<string, object> ExtraProperties { get; set; }
}
FreeSql能够自动处理各种基础类型的序列化和反序列化。
自定义JSON序列化
如果需要自定义JSON的序列化行为,可以通过配置FreeSql的JSON序列化选项来实现:
var fsql = new FreeSqlBuilder()
.UseConnectionString(DataType.PostgreSQL, connectionString)
.UseJsonMap(json =>
{
// 自定义JSON序列化配置
json.SerializeOptions = ...;
json.DeserializeOptions = ...;
})
.Build();
性能优化建议
-
使用JSONB而非JSON:在PostgreSQL中,JSONB类型提供了更好的查询性能和索引支持
-
合理设计键名:保持键名的简洁性可以减少存储空间
-
避免过度使用:虽然灵活,但过度使用动态属性会影响查询性能和数据一致性
实际应用案例
假设我们正在开发一个电商系统,需要为商品存储各种不确定的规格参数:
public class Product
{
public int Id { get; set; }
public string Name { get; set; }
public Dictionary<string, string> Specifications { get; set; }
}
// 使用示例
var product = new Product
{
Name = "智能手机",
Specifications = new Dictionary<string, string>
{
{"颜色", "黑色"},
{"内存", "8GB"},
{"存储", "256GB"},
{"屏幕尺寸", "6.5英寸"}
}
};
通过这种方式,我们可以灵活地存储各种商品的差异化规格参数,而不需要为每种商品类型创建单独的表结构。
总结
FreeSql提供了简单而强大的方式来处理不确定键值对字典到JSON格式列的映射。这种模式特别适用于需要存储动态属性或元数据的场景,为开发者提供了极大的灵活性。通过合理使用这一特性,可以显著减少数据库模式变更的频率,同时保持数据模型的清晰和可维护性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00