Geocompx/geocompr项目:解决SVM空间调参中的mlr3错误
2025-07-10 17:28:01作者:裘晴惠Vivianne
问题背景
在使用Geocompx/geocompr项目第12章"空间交叉验证与机器学习超参数调优"中的SVM(支持向量机)空间调参示例时,用户遇到了mlr3包相关的错误。错误信息显示在训练过程中出现了预测类型不匹配和NULL方法参数的问题。
错误分析
错误主要出现在两个关键点:
-
预测类型不匹配警告:基础学习器(classif.ksvm.tuned)和回退学习器(classif.featureless)的预测类型不一致,分别为'prob'和'response'
-
训练错误:在封装参数(encapsulate)为NULL时出现了断言失败,要求必须是{'none','try','evaluate','callr'}中的一个
解决方案
1. 版本兼容性问题
经过分析,这个问题可能与mlr3生态系统的版本兼容性有关。推荐使用以下稳定版本组合:
- mlr3 0.20.2
- mlr3extralearners 0.9.0
可以通过以下命令安装这些版本:
install.packages("mlr3") # 安装mlr3稳定版
remotes::install_github("mlr-org/mlr3extralearners@v0.9.0") # 安装特定版本的扩展学习器
2. 代码调整建议
对于示例代码,可以做出以下调整:
-
确保预测类型一致:明确设置所有学习器的predict_type参数
-
正确设置封装参数:在auto_tuner或resample函数中明确指定encapsulate参数
-
并行处理配置:确保并行处理设置正确,避免资源冲突
3. 完整解决方案代码
# 确保使用正确版本的包
library(mlr3)
library(mlr3spatiotempcv)
library(mlr3tuning)
# 数据准备
data("lsl", "study_mask", package = "spDataLarge")
ta <- terra::rast(system.file("raster/ta.tif", package = "spDataLarge"))
# 创建分类任务
task = mlr3spatiotempcv::as_task_classif_st(
x = as_data_backend(data = lsl),
target = "lslpts",
id = "ecuador_lsl",
positive = "TRUE",
coordinate_names = c("x", "y"),
crs = "EPSG:32717",
coords_as_features = FALSE
)
# 配置SVM学习器
lrn_ksvm = mlr3::lrn("classif.ksvm",
predict_type = "prob",
kernel = "rbfdot",
type = "C-svc")
# 设置回退学习器,确保预测类型一致
lrn_ksvm$fallback = lrn("classif.featureless", predict_type = "prob")
# 性能评估级别的重采样
perf_level = mlr3::rsmp("repeated_spcv_coords", folds = 5, repeats = 100)
# 超参数调优级别的重采样
tune_level = mlr3::rsmp("spcv_coords", folds = 5)
# 定义搜索空间
search_space = paradox::ps(
C = paradox::p_dbl(lower = -12, upper = 15, trafo = function(x) 2^x),
sigma = paradox::p_dbl(lower = -15, upper = 6, trafo = function(x) 2^x)
)
# 设置终止条件
terminator = mlr3tuning::trm("evals", n_evals = 50)
# 配置自动调优器
at_ksvm = mlr3tuning::auto_tuner(
learner = lrn_ksvm,
resampling = tune_level,
measure = mlr3::msr("classif.auc"),
search_space = search_space,
terminator = terminator,
tuner = tuner,
encapsulate = "evaluate" # 明确设置封装方法
)
# 配置并行处理
library(future)
plan(list("sequential", "multisession"), workers = floor(availableCores() / 2))
# 执行空间嵌套交叉验证
progressr::with_progress({
rr_spcv_svm = mlr3::resample(
task = task,
learner = at_ksvm,
resampling = perf_level,
store_models = FALSE,
encapsulate = "evaluate" # 明确设置封装方法
)
})
# 停止并行处理
future:::ClusterRegistry("stop")
技术要点解析
-
空间交叉验证:在空间数据分析中,传统的交叉验证可能导致数据泄漏,空间交叉验证通过考虑空间自相关来解决这个问题。
-
超参数调优:SVM的性能很大程度上依赖于超参数(如C和sigma)的选择,空间调优确保选择的参数在空间上具有鲁棒性。
-
并行处理:由于空间交叉验证计算量大,合理配置并行处理可以显著提高效率。
结论
通过使用稳定的包版本和正确的参数配置,可以成功运行Geocompx/geocompr项目中的SVM空间调参示例。这为空间机器学习提供了可靠的方法论基础,特别适用于需要考虑空间自相关的地理数据分析场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210