Geocompx/geocompr项目:解决SVM空间调参中的mlr3错误
2025-07-10 06:11:44作者:裘晴惠Vivianne
问题背景
在使用Geocompx/geocompr项目第12章"空间交叉验证与机器学习超参数调优"中的SVM(支持向量机)空间调参示例时,用户遇到了mlr3包相关的错误。错误信息显示在训练过程中出现了预测类型不匹配和NULL方法参数的问题。
错误分析
错误主要出现在两个关键点:
-
预测类型不匹配警告:基础学习器(classif.ksvm.tuned)和回退学习器(classif.featureless)的预测类型不一致,分别为'prob'和'response'
-
训练错误:在封装参数(encapsulate)为NULL时出现了断言失败,要求必须是{'none','try','evaluate','callr'}中的一个
解决方案
1. 版本兼容性问题
经过分析,这个问题可能与mlr3生态系统的版本兼容性有关。推荐使用以下稳定版本组合:
- mlr3 0.20.2
- mlr3extralearners 0.9.0
可以通过以下命令安装这些版本:
install.packages("mlr3") # 安装mlr3稳定版
remotes::install_github("mlr-org/mlr3extralearners@v0.9.0") # 安装特定版本的扩展学习器
2. 代码调整建议
对于示例代码,可以做出以下调整:
-
确保预测类型一致:明确设置所有学习器的predict_type参数
-
正确设置封装参数:在auto_tuner或resample函数中明确指定encapsulate参数
-
并行处理配置:确保并行处理设置正确,避免资源冲突
3. 完整解决方案代码
# 确保使用正确版本的包
library(mlr3)
library(mlr3spatiotempcv)
library(mlr3tuning)
# 数据准备
data("lsl", "study_mask", package = "spDataLarge")
ta <- terra::rast(system.file("raster/ta.tif", package = "spDataLarge"))
# 创建分类任务
task = mlr3spatiotempcv::as_task_classif_st(
x = as_data_backend(data = lsl),
target = "lslpts",
id = "ecuador_lsl",
positive = "TRUE",
coordinate_names = c("x", "y"),
crs = "EPSG:32717",
coords_as_features = FALSE
)
# 配置SVM学习器
lrn_ksvm = mlr3::lrn("classif.ksvm",
predict_type = "prob",
kernel = "rbfdot",
type = "C-svc")
# 设置回退学习器,确保预测类型一致
lrn_ksvm$fallback = lrn("classif.featureless", predict_type = "prob")
# 性能评估级别的重采样
perf_level = mlr3::rsmp("repeated_spcv_coords", folds = 5, repeats = 100)
# 超参数调优级别的重采样
tune_level = mlr3::rsmp("spcv_coords", folds = 5)
# 定义搜索空间
search_space = paradox::ps(
C = paradox::p_dbl(lower = -12, upper = 15, trafo = function(x) 2^x),
sigma = paradox::p_dbl(lower = -15, upper = 6, trafo = function(x) 2^x)
)
# 设置终止条件
terminator = mlr3tuning::trm("evals", n_evals = 50)
# 配置自动调优器
at_ksvm = mlr3tuning::auto_tuner(
learner = lrn_ksvm,
resampling = tune_level,
measure = mlr3::msr("classif.auc"),
search_space = search_space,
terminator = terminator,
tuner = tuner,
encapsulate = "evaluate" # 明确设置封装方法
)
# 配置并行处理
library(future)
plan(list("sequential", "multisession"), workers = floor(availableCores() / 2))
# 执行空间嵌套交叉验证
progressr::with_progress({
rr_spcv_svm = mlr3::resample(
task = task,
learner = at_ksvm,
resampling = perf_level,
store_models = FALSE,
encapsulate = "evaluate" # 明确设置封装方法
)
})
# 停止并行处理
future:::ClusterRegistry("stop")
技术要点解析
-
空间交叉验证:在空间数据分析中,传统的交叉验证可能导致数据泄漏,空间交叉验证通过考虑空间自相关来解决这个问题。
-
超参数调优:SVM的性能很大程度上依赖于超参数(如C和sigma)的选择,空间调优确保选择的参数在空间上具有鲁棒性。
-
并行处理:由于空间交叉验证计算量大,合理配置并行处理可以显著提高效率。
结论
通过使用稳定的包版本和正确的参数配置,可以成功运行Geocompx/geocompr项目中的SVM空间调参示例。这为空间机器学习提供了可靠的方法论基础,特别适用于需要考虑空间自相关的地理数据分析场景。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26