OpenJ9虚拟机中虚拟线程堆栈跟踪问题的分析与解决
问题背景
在OpenJ9虚拟机21.0.7-beta版本中,开发团队发现了一个与服务性(serviceability)相关的JVM TI测试用例失败的问题。具体表现为在虚拟线程(virtual thread)场景下获取挂起线程的堆栈跟踪(StackTrace)时,输出的堆栈信息不符合预期格式。
问题现象
测试用例GetStackTraceSuspendedStressTest.java在执行过程中报告了"incorrect stacktrace"错误。测试期望虚拟线程的堆栈跟踪应该从特定的入口方法开始,但实际获取到的堆栈跟踪却显示了不同的起始点。
从错误日志中可以看到,测试期望堆栈跟踪应该从"enter(...)"方法开始,但实际获取到的堆栈跟踪起始于java/util/concurrent/SynchronousQueue$Transferer.xferLifo方法,随后经过一系列方法调用,最终到达虚拟线程的底层实现。
技术分析
这个问题涉及到OpenJ9虚拟机对Java虚拟线程(JEP 425)的支持实现。虚拟线程是Java 19引入的轻量级线程,由JVM管理而非操作系统管理。在获取虚拟线程的堆栈跟踪时,JVM需要正确处理虚拟线程特有的调用栈结构。
从技术实现角度看,这个问题可能源于:
- 虚拟线程挂起状态下的堆栈帧捕获逻辑不完善
- JVM TI接口在处理虚拟线程时的特殊路径未正确实现
- 堆栈跟踪起始点判断逻辑需要调整
解决方案
开发团队通过分析确定了问题根源,并提交了修复代码。主要修正点包括:
- 完善了虚拟线程挂起状态下的堆栈帧捕获逻辑
- 调整了JVM TI接口对虚拟线程的特殊处理路径
- 确保堆栈跟踪能够正确反映虚拟线程的执行路径
修复后,测试用例能够正确获取虚拟线程在挂起状态下的完整堆栈跟踪,且起始点符合预期。
影响范围
该问题主要影响:
- 使用JVM TI接口获取虚拟线程堆栈跟踪的应用
- 依赖堆栈跟踪正确性的调试工具和监控系统
- 使用虚拟线程进行复杂并发编程的场景
总结
OpenJ9团队通过这个问题进一步优化了对Java虚拟线程的支持,特别是在服务性方面的实现。这不仅解决了当前测试失败的问题,也为后续虚拟线程相关功能的稳定性奠定了基础。对于使用OpenJ9运行时的开发者来说,这一修复意味着在使用虚拟线程时可以获得更准确的调试信息,有助于复杂并发问题的诊断和解决。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00