RF-DETR项目中如何为检测结果添加类别标签注释
在计算机视觉目标检测任务中,可视化检测结果时,仅显示边界框和类别ID往往不够直观。本文将介绍如何在RF-DETR项目中使用COCO数据集类别信息,为检测结果添加可读的类别标签注释。
检测结果可视化基础
RF-DETR是一个基于DETR架构的目标检测模型,其检测结果通常包含以下关键信息:
- 边界框坐标(xyxy格式)
- 检测置信度
- 类别ID
- 可能的跟踪ID(如果启用了跟踪功能)
这些信息虽然完整,但直接展示给用户时,类别ID的数字表示不够友好,需要转换为可读的类别名称。
COCO数据集类别映射
COCO(Common Objects in Context)是计算机视觉领域广泛使用的基准数据集,包含80个常见物体类别。RF-DETR项目内置了COCO_CLASSES字典,可以方便地将类别ID映射为人类可读的类别名称。
实现步骤详解
-
导入必要模块: 首先需要导入RF-DETR基础模型、COCO类别映射、Supervision可视化工具以及图像处理模块。
-
加载图像和模型: 使用Pillow库加载待检测图像,并初始化RF-DETR模型。
-
执行目标检测: 调用模型的predict方法获取检测结果,可以设置置信度阈值过滤低质量检测。
-
准备可视化工具: 创建边界框标注器和标签标注器实例,后者可以智能调整标签位置避免重叠。
-
生成标签文本: 将类别ID和置信度组合成格式化的标签字符串,如"dog 0.95"。
-
执行标注并保存结果: 在原图副本上依次添加边界框和标签标注,生成最终的可视化结果。
完整代码示例
from rfdetr import RFDETRBase
from rfdetr.util.coco_classes import COCO_CLASSES
import supervision as sv
from PIL import Image
# 加载图像和模型
image = Image.open("example.jpg")
model = RFDETRBase()
# 执行检测
detections = model.predict(image, threshold=0.5)
# 初始化标注器
bbox_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator(smart_position=True)
# 生成标签文本
labels = [
f"{COCO_CLASSES[class_id]} {confidence:.2f}"
for class_id, confidence
in zip(detections.class_id, detections.confidence)
]
# 执行标注
annotated_image = image.copy()
annotated_image = bbox_annotator.annotate(annotated_image, detections)
annotated_image = label_annotator.annotate(annotated_image, detections, labels)
技术要点说明
-
Supervision库:提供了强大的可视化工具,支持边界框、标签、掩码等多种标注方式。
-
智能标签位置:LabelAnnotator的smart_position参数可以自动优化标签位置,避免遮挡重要视觉信息。
-
置信度格式化:将浮点型置信度格式化为两位小数,既保证信息完整又避免显示过于冗长。
-
图像处理流程:在原图副本上操作,保留原始图像数据不受影响。
实际应用建议
-
对于自定义数据集,可以类似地创建自己的类别映射字典。
-
根据应用场景调整标签显示格式,如添加跟踪ID、省略置信度等。
-
对于密集场景,可以调整标签字体大小或启用更复杂的避让算法。
通过这种方式,可以显著提升目标检测结果的可读性和实用性,便于算法调试和结果展示。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00