SplitwiseSim:一种LLM服务集群模拟器
1. 项目介绍
SplitwiseSim 是一个离散事件模拟器,用于评估大型语言模型(LLM)推理集群中的模型服务。该项目旨在评估 Splitwise 技术,这是一种将 LLM 推理阶段跨不同机器分割的推理服务技术。SplitwiseSim 可以轻松扩展到其他应用程序和用例。
2. 项目快速启动
要开始使用 SplitwiseSim,请按照以下步骤安装其 Python 依赖项。建议从创建一个新的 Python 环境开始。
# 创建并激活新的 Python 环境
conda create -n splitwise-sim python=3.11
conda activate splitwise-sim
# 安装依赖
pip install -r requirements.txt
请注意,SplitwiseSim 仅在 Python 3.11 上进行了测试。但是,它很可能也适用于其他 Python 版本。
3. 应用案例和最佳实践
快速启动脚本
最简单的启动 SplitwiseSim 的方式是运行 run.py,它使用 config.yaml 中指定的默认配置参数。可以通过使用 Hydra 覆盖默认配置来运行不同的配置。
下面是一个示例脚本 scripts/run_baseline_h_example.sh,它覆盖了默认配置以执行一个简单的 Baseline-H100 配置,该配置使用单个 DGX-H100 服务器。
# 运行简单的 Baseline-H100 示例
./scripts/run_baseline_h_example.sh
配置文件
SplitwiseSim 使用分层 YAML 配置文件作为输入,并产生多个 CSV 文件作为输出。它使用 Hydra 进行配置管理。顶层配置文件 config.yaml 指向其他配置文件,这些文件位于 configs/ 目录中。
输出分析
生成的结果将存放在 results/ 目录中,具体路径可以在 config.yaml 中的 output_dir 字段指定。使用 Jupyter Notebook 打开 notebooks/example.ipynb 可以看到如何轻松提取相关输出的示例。
请求跟踪
SplitwiseSim 期望请求跟踪在 CSV 文件中,每条请求包含以下字段:
request_id:请求的 ID,通常是单调递增的数字。request_type:请求的类型(例如,深度学习推理、LLM 推理等)。目前仅支持2,表示生成性 LLM 推理。application_id:请求目标的应用程序/端点 ID。默认为0,表示单个应用程序。arrival_timestamp:请求到达集群的时间戳。batch_size:如果请求在到达时已经批处理,可以在此指定(当前未使用)。prompt_size:请求输入提示中的令牌数。token_size:请求输出的令牌数。
4. 典型生态项目
SplitwiseSim 作为一种集群模拟器,可以与以下生态项目结合使用:
- Hydra:用于配置管理的库。
- Jupyter Notebook:用于分析和可视化结果的工具。
- conda:用于环境管理的包管理器。
通过这些工具和项目的结合,开发者可以更有效地进行模型服务的评估和优化。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00