SplitwiseSim:一种LLM服务集群模拟器
1. 项目介绍
SplitwiseSim 是一个离散事件模拟器,用于评估大型语言模型(LLM)推理集群中的模型服务。该项目旨在评估 Splitwise 技术,这是一种将 LLM 推理阶段跨不同机器分割的推理服务技术。SplitwiseSim 可以轻松扩展到其他应用程序和用例。
2. 项目快速启动
要开始使用 SplitwiseSim,请按照以下步骤安装其 Python 依赖项。建议从创建一个新的 Python 环境开始。
# 创建并激活新的 Python 环境
conda create -n splitwise-sim python=3.11
conda activate splitwise-sim
# 安装依赖
pip install -r requirements.txt
请注意,SplitwiseSim 仅在 Python 3.11 上进行了测试。但是,它很可能也适用于其他 Python 版本。
3. 应用案例和最佳实践
快速启动脚本
最简单的启动 SplitwiseSim 的方式是运行 run.py,它使用 config.yaml 中指定的默认配置参数。可以通过使用 Hydra 覆盖默认配置来运行不同的配置。
下面是一个示例脚本 scripts/run_baseline_h_example.sh,它覆盖了默认配置以执行一个简单的 Baseline-H100 配置,该配置使用单个 DGX-H100 服务器。
# 运行简单的 Baseline-H100 示例
./scripts/run_baseline_h_example.sh
配置文件
SplitwiseSim 使用分层 YAML 配置文件作为输入,并产生多个 CSV 文件作为输出。它使用 Hydra 进行配置管理。顶层配置文件 config.yaml 指向其他配置文件,这些文件位于 configs/ 目录中。
输出分析
生成的结果将存放在 results/ 目录中,具体路径可以在 config.yaml 中的 output_dir 字段指定。使用 Jupyter Notebook 打开 notebooks/example.ipynb 可以看到如何轻松提取相关输出的示例。
请求跟踪
SplitwiseSim 期望请求跟踪在 CSV 文件中,每条请求包含以下字段:
request_id:请求的 ID,通常是单调递增的数字。request_type:请求的类型(例如,深度学习推理、LLM 推理等)。目前仅支持2,表示生成性 LLM 推理。application_id:请求目标的应用程序/端点 ID。默认为0,表示单个应用程序。arrival_timestamp:请求到达集群的时间戳。batch_size:如果请求在到达时已经批处理,可以在此指定(当前未使用)。prompt_size:请求输入提示中的令牌数。token_size:请求输出的令牌数。
4. 典型生态项目
SplitwiseSim 作为一种集群模拟器,可以与以下生态项目结合使用:
- Hydra:用于配置管理的库。
- Jupyter Notebook:用于分析和可视化结果的工具。
- conda:用于环境管理的包管理器。
通过这些工具和项目的结合,开发者可以更有效地进行模型服务的评估和优化。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00