Apache Kvrocks 实现非前缀字符串匹配的 SCAN 命令优化
在键值存储系统中,SCAN 命令是一个非常重要的功能,它允许用户遍历数据库中的所有键。Apache Kvrocks 作为 Redis 协议的兼容实现,其 SCAN 命令最初仅支持前缀匹配模式,这在某些使用场景下存在局限性。本文将深入探讨 Kvrocks 如何扩展 SCAN 命令以支持更灵活的非前缀字符串匹配功能。
技术背景
传统键值存储系统中的 SCAN 命令通常采用前缀匹配方式,这种设计主要基于性能考虑。前缀匹配可以利用底层存储引擎的有序特性进行高效的范围查询,而非前缀匹配(如后缀匹配或子串匹配)则需要扫描整个键空间,这在大型数据库中会带来显著的性能开销。
Kvrocks 作为基于 RocksDB 的存储系统,其初始实现也采用了这种设计理念,仅支持前缀匹配模式。但随着用户需求的多样化,这种限制开始影响某些特定场景下的使用体验。
需求分析
用户在实际应用中经常需要查找包含特定子串的键,例如:
- 查找所有以特定后缀结尾的键
- 查找包含特定关键字的键
- 实现更复杂的通配符匹配模式
这些需求在 Redis 中可以通过 SCAN 命令配合通配符模式实现,但在 Kvrocks 的初始版本中无法满足。
实现方案
Kvrocks 团队经过讨论,确定了以下实现原则:
- 兼容性优先:保持与 Redis SCAN 命令的完全兼容,包括返回格式和游标行为
- 渐进式扫描:即使匹配结果为空,也通过多次迭代完成扫描,避免单次操作耗时过长
- 性能保护:设置最大扫描键数限制,防止复杂模式导致的全库扫描影响系统稳定性
技术实现上主要修改了以下几个部分:
- 重构了 CommandScanBase 基类,增强参数解析能力
- 扩展了数据库扫描接口,支持多种匹配模式
- 优化了迭代器逻辑,确保不同匹配模式下的正确行为
性能考量
非前缀匹配虽然提供了更大的灵活性,但也带来了性能挑战。Kvrocks 的实现特别注意了以下几点:
- 分批处理:将大规模扫描分解为多次小批量操作
- 提前终止:当扫描键数超过阈值时提前返回部分结果
- 游标管理:保持游标状态,确保中断后可以继续扫描
使用示例
扩展后的 SCAN 命令支持以下匹配模式:
- 前缀匹配:
SCAN 0 MATCH prefix* - 后缀匹配:
SCAN 0 MATCH *suffix - 子串匹配:
SCAN 0 MATCH *substring* - 复杂模式:
SCAN 0 MATCH pre*mid*suf
总结
Kvrocks 对 SCAN 命令的扩展显著提升了系统的灵活性和实用性,使开发者能够更方便地处理各种键查询场景。这一改进不仅保持了与 Redis 协议的兼容性,还通过精心设计避免了潜在的性能问题,体现了 Kvrocks 项目在功能丰富性和系统稳定性之间的平衡考量。
对于开发者而言,这一特性特别适用于需要复杂键查询的业务场景,如日志分析、特定模式的数据清理等操作。同时,Kvrocks 团队也建议用户根据实际数据规模合理使用非前缀匹配功能,对于大规模数据集,考虑建立适当的索引或使用专门的搜索工具可能更为高效。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00